Loading…

Ground-state properties of the one-dimensional Hubbard model with pairing potential

We consider a modification of the one-dimensional Hubbard model by including an external pairing potential. Guided by analytic bosonization results, we quantitatively determine the grand-canonical zero-temperature phase diagram using both finite and infinite density matrix renormalization group algo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-09
Main Authors: Myung-Hoon, Chung, Orignac, Edmond, Poilblanc, Didier, Capponi, Sylvain
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Myung-Hoon, Chung
Orignac, Edmond
Poilblanc, Didier
Capponi, Sylvain
description We consider a modification of the one-dimensional Hubbard model by including an external pairing potential. Guided by analytic bosonization results, we quantitatively determine the grand-canonical zero-temperature phase diagram using both finite and infinite density matrix renormalization group algorithm based on the formalism of matrix product states and matrix product operator, respectively. By computing various local quantities as well as the half-system entanglement, we are able to distinguish between Mott, metallic and superconducting phases. We point out the compressible nature of the Mott phase and the fully gapped nature of the many-body spectrum of the superconducting phase, in the presence of explicit U(1)-charge symmetry breaking.
doi_str_mv 10.48550/arxiv.1912.10203
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2330266545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330266545</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-4a0ee731d73eb310fca72fa5e1c4cfcce9e221b3ee7236a379fb0bc8f71fd5db3</originalsourceid><addsrcrecordid>eNotj8tKAzEYRoMgWGofwF3AdWouk8nMUoq2QqELuy-5_LEp02RMMurjO6Crb3P4OAehB0bXTSclfdL5J3ytWc_4mlFOxQ1acCEY6RrO79CqlAullLeKSykW6H2b0xQdKVVXwGNOI-QaoODkcT0DThGIC1eIJaSoB7ybjNHZ4WtyMODvUM941CGH-IHHVCHWoId7dOv1UGD1v0t0fH05bnZkf9i-bZ73REsuSaMpgBLMKQFGMOqtVtxrCcw21lsLPXDOjJghLlotVO8NNbbzinknnRFL9Ph3O1t_TlDq6ZKmPEuW0xw8J7aykeIX4YtTig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330266545</pqid></control><display><type>article</type><title>Ground-state properties of the one-dimensional Hubbard model with pairing potential</title><source>Publicly Available Content (ProQuest)</source><creator>Myung-Hoon, Chung ; Orignac, Edmond ; Poilblanc, Didier ; Capponi, Sylvain</creator><creatorcontrib>Myung-Hoon, Chung ; Orignac, Edmond ; Poilblanc, Didier ; Capponi, Sylvain</creatorcontrib><description>We consider a modification of the one-dimensional Hubbard model by including an external pairing potential. Guided by analytic bosonization results, we quantitatively determine the grand-canonical zero-temperature phase diagram using both finite and infinite density matrix renormalization group algorithm based on the formalism of matrix product states and matrix product operator, respectively. By computing various local quantities as well as the half-system entanglement, we are able to distinguish between Mott, metallic and superconducting phases. We point out the compressible nature of the Mott phase and the fully gapped nature of the many-body spectrum of the superconducting phase, in the presence of explicit U(1)-charge symmetry breaking.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1912.10203</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Broken symmetry ; Compressibility ; Entanglement ; Phase diagrams ; Superconductivity</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2330266545?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Myung-Hoon, Chung</creatorcontrib><creatorcontrib>Orignac, Edmond</creatorcontrib><creatorcontrib>Poilblanc, Didier</creatorcontrib><creatorcontrib>Capponi, Sylvain</creatorcontrib><title>Ground-state properties of the one-dimensional Hubbard model with pairing potential</title><title>arXiv.org</title><description>We consider a modification of the one-dimensional Hubbard model by including an external pairing potential. Guided by analytic bosonization results, we quantitatively determine the grand-canonical zero-temperature phase diagram using both finite and infinite density matrix renormalization group algorithm based on the formalism of matrix product states and matrix product operator, respectively. By computing various local quantities as well as the half-system entanglement, we are able to distinguish between Mott, metallic and superconducting phases. We point out the compressible nature of the Mott phase and the fully gapped nature of the many-body spectrum of the superconducting phase, in the presence of explicit U(1)-charge symmetry breaking.</description><subject>Algorithms</subject><subject>Broken symmetry</subject><subject>Compressibility</subject><subject>Entanglement</subject><subject>Phase diagrams</subject><subject>Superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj8tKAzEYRoMgWGofwF3AdWouk8nMUoq2QqELuy-5_LEp02RMMurjO6Crb3P4OAehB0bXTSclfdL5J3ytWc_4mlFOxQ1acCEY6RrO79CqlAullLeKSykW6H2b0xQdKVVXwGNOI-QaoODkcT0DThGIC1eIJaSoB7ybjNHZ4WtyMODvUM941CGH-IHHVCHWoId7dOv1UGD1v0t0fH05bnZkf9i-bZ73REsuSaMpgBLMKQFGMOqtVtxrCcw21lsLPXDOjJghLlotVO8NNbbzinknnRFL9Ph3O1t_TlDq6ZKmPEuW0xw8J7aykeIX4YtTig</recordid><startdate>20200926</startdate><enddate>20200926</enddate><creator>Myung-Hoon, Chung</creator><creator>Orignac, Edmond</creator><creator>Poilblanc, Didier</creator><creator>Capponi, Sylvain</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200926</creationdate><title>Ground-state properties of the one-dimensional Hubbard model with pairing potential</title><author>Myung-Hoon, Chung ; Orignac, Edmond ; Poilblanc, Didier ; Capponi, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-4a0ee731d73eb310fca72fa5e1c4cfcce9e221b3ee7236a379fb0bc8f71fd5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Broken symmetry</topic><topic>Compressibility</topic><topic>Entanglement</topic><topic>Phase diagrams</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Myung-Hoon, Chung</creatorcontrib><creatorcontrib>Orignac, Edmond</creatorcontrib><creatorcontrib>Poilblanc, Didier</creatorcontrib><creatorcontrib>Capponi, Sylvain</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myung-Hoon, Chung</au><au>Orignac, Edmond</au><au>Poilblanc, Didier</au><au>Capponi, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ground-state properties of the one-dimensional Hubbard model with pairing potential</atitle><jtitle>arXiv.org</jtitle><date>2020-09-26</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We consider a modification of the one-dimensional Hubbard model by including an external pairing potential. Guided by analytic bosonization results, we quantitatively determine the grand-canonical zero-temperature phase diagram using both finite and infinite density matrix renormalization group algorithm based on the formalism of matrix product states and matrix product operator, respectively. By computing various local quantities as well as the half-system entanglement, we are able to distinguish between Mott, metallic and superconducting phases. We point out the compressible nature of the Mott phase and the fully gapped nature of the many-body spectrum of the superconducting phase, in the presence of explicit U(1)-charge symmetry breaking.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1912.10203</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2330266545
source Publicly Available Content (ProQuest)
subjects Algorithms
Broken symmetry
Compressibility
Entanglement
Phase diagrams
Superconductivity
title Ground-state properties of the one-dimensional Hubbard model with pairing potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T03%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ground-state%20properties%20of%20the%20one-dimensional%20Hubbard%20model%20with%20pairing%20potential&rft.jtitle=arXiv.org&rft.au=Myung-Hoon,%20Chung&rft.date=2020-09-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1912.10203&rft_dat=%3Cproquest%3E2330266545%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-4a0ee731d73eb310fca72fa5e1c4cfcce9e221b3ee7236a379fb0bc8f71fd5db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330266545&rft_id=info:pmid/&rfr_iscdi=true