Loading…

Heat transfer in the hydraulic jump region of circular free-surface liquid jets

•Accurate capturing of four unique flow structures in the hydraulic jump region.•Definition of distinct flow regimes based on vortex structures.•Detailed investigation of the flow regimes influence on the local heat transfer.•Presenting the obstacle height effect on the flow regimes.•Application of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2020-01, Vol.146, p.118823, Article 118823
Main Authors: Askarizadeh, Hossein, Ahmadikia, Hossein, Ehrenpreis, Claas, Kneer, Reinhold, Pishevar, Ahmadreza, Rohlfs, Wilko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-948770b2401ab656292e88678e1955d1aa6c6332170cb4e097d9d1335dcfbd493
cites cdi_FETCH-LOGICAL-c407t-948770b2401ab656292e88678e1955d1aa6c6332170cb4e097d9d1335dcfbd493
container_end_page
container_issue
container_start_page 118823
container_title International journal of heat and mass transfer
container_volume 146
creator Askarizadeh, Hossein
Ahmadikia, Hossein
Ehrenpreis, Claas
Kneer, Reinhold
Pishevar, Ahmadreza
Rohlfs, Wilko
description •Accurate capturing of four unique flow structures in the hydraulic jump region.•Definition of distinct flow regimes based on vortex structures.•Detailed investigation of the flow regimes influence on the local heat transfer.•Presenting the obstacle height effect on the flow regimes.•Application of an optimized surface tension model to simulate the hydraulic jump. Because of its high heat transfer potential, liquid jet impingement is broadly used in cooling applications. As a free-surface jet spreads radially after impinging on a flat surface, a hydraulic jump can occur that severely affects the heat transfer. This study numerically scrutinizes the effects of different flow structures within the jump on the local heat transfer of the impinged plate subjected to a uniform heat flux. For the numerical simulations, a modified version of the interFoam solver of OpenFOAM is used, in which the interface compression scheme is amended implementing the continuum surface stress method. To create different flow structures in the jump region, an obstacle with a varying height is placed at the edge of the impinged plate. Jump structures and the transitions between them are distinguished by virtue of the appearance of a separation bubble on the bottom surface and/or a roller underneath the interface in the jump region. The results show that the hydraulic jump in itself reduces the local Nusselt number, whereas the roller underneath the free surface slightly improves the heat transfer. The minimum heat transfer rate occurs right before the separation bubble (at the separation point); however, the local stagnation point ahead of the separation bubble increases the Nusselt number.
doi_str_mv 10.1016/j.ijheatmasstransfer.2019.118823
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2330585430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019333800</els_id><sourcerecordid>2330585430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-948770b2401ab656292e88678e1955d1aa6c6332170cb4e097d9d1335dcfbd493</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwHyJx4dKSj34kN9AEDDRpFzhHaeKyVFu7OS3S_j2dCicunCzLrx7bDyF3nKWc8eK-SUOzAdvvbIw92jbWgKlgXKecKyXkGZlxVepEcKXPyYwxXiZacnZJrmJsTi3LihlZL0cG_QXQ0NJ-A3Rz9GiHbXC0GXZ7ivAZupZ2NXUB3bC1SGsESOKAtXVAt-EwBE8b6OM1uajtNsLNT52Tj-en98UyWa1fXhePq8RlrOwTnamyZJXIGLdVkRdCC1CqKBVwneeeW1u4QkoxXumqDJguvfZcyty7uvKZlnNyO3H32B0GiL1pugHbcaURUrJc5ZlkY-phSjnsYkSozR7DzuLRcGZOGk1j_mo0J41m0jgi3iYEjN98hXEaXYDWgQ8Irje-C_-HfQOvjYdj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330585430</pqid></control><display><type>article</type><title>Heat transfer in the hydraulic jump region of circular free-surface liquid jets</title><source>Elsevier</source><creator>Askarizadeh, Hossein ; Ahmadikia, Hossein ; Ehrenpreis, Claas ; Kneer, Reinhold ; Pishevar, Ahmadreza ; Rohlfs, Wilko</creator><creatorcontrib>Askarizadeh, Hossein ; Ahmadikia, Hossein ; Ehrenpreis, Claas ; Kneer, Reinhold ; Pishevar, Ahmadreza ; Rohlfs, Wilko</creatorcontrib><description>•Accurate capturing of four unique flow structures in the hydraulic jump region.•Definition of distinct flow regimes based on vortex structures.•Detailed investigation of the flow regimes influence on the local heat transfer.•Presenting the obstacle height effect on the flow regimes.•Application of an optimized surface tension model to simulate the hydraulic jump. Because of its high heat transfer potential, liquid jet impingement is broadly used in cooling applications. As a free-surface jet spreads radially after impinging on a flat surface, a hydraulic jump can occur that severely affects the heat transfer. This study numerically scrutinizes the effects of different flow structures within the jump on the local heat transfer of the impinged plate subjected to a uniform heat flux. For the numerical simulations, a modified version of the interFoam solver of OpenFOAM is used, in which the interface compression scheme is amended implementing the continuum surface stress method. To create different flow structures in the jump region, an obstacle with a varying height is placed at the edge of the impinged plate. Jump structures and the transitions between them are distinguished by virtue of the appearance of a separation bubble on the bottom surface and/or a roller underneath the interface in the jump region. The results show that the hydraulic jump in itself reduces the local Nusselt number, whereas the roller underneath the free surface slightly improves the heat transfer. The minimum heat transfer rate occurs right before the separation bubble (at the separation point); however, the local stagnation point ahead of the separation bubble increases the Nusselt number.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.118823</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bubbles ; Circular hydraulic jumps ; Computational fluid dynamics ; Computer simulation ; Flat surfaces ; Fluid flow ; Free surfaces ; Heat flux ; Heat transfer ; Hydraulic jump ; Hydraulics ; Jet impingement ; Nusselt number ; Plates (structural members) ; Roller ; Separation ; Separation bubble ; Stagnation point ; Surface jets ; Viscosity</subject><ispartof>International journal of heat and mass transfer, 2020-01, Vol.146, p.118823, Article 118823</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-948770b2401ab656292e88678e1955d1aa6c6332170cb4e097d9d1335dcfbd493</citedby><cites>FETCH-LOGICAL-c407t-948770b2401ab656292e88678e1955d1aa6c6332170cb4e097d9d1335dcfbd493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Askarizadeh, Hossein</creatorcontrib><creatorcontrib>Ahmadikia, Hossein</creatorcontrib><creatorcontrib>Ehrenpreis, Claas</creatorcontrib><creatorcontrib>Kneer, Reinhold</creatorcontrib><creatorcontrib>Pishevar, Ahmadreza</creatorcontrib><creatorcontrib>Rohlfs, Wilko</creatorcontrib><title>Heat transfer in the hydraulic jump region of circular free-surface liquid jets</title><title>International journal of heat and mass transfer</title><description>•Accurate capturing of four unique flow structures in the hydraulic jump region.•Definition of distinct flow regimes based on vortex structures.•Detailed investigation of the flow regimes influence on the local heat transfer.•Presenting the obstacle height effect on the flow regimes.•Application of an optimized surface tension model to simulate the hydraulic jump. Because of its high heat transfer potential, liquid jet impingement is broadly used in cooling applications. As a free-surface jet spreads radially after impinging on a flat surface, a hydraulic jump can occur that severely affects the heat transfer. This study numerically scrutinizes the effects of different flow structures within the jump on the local heat transfer of the impinged plate subjected to a uniform heat flux. For the numerical simulations, a modified version of the interFoam solver of OpenFOAM is used, in which the interface compression scheme is amended implementing the continuum surface stress method. To create different flow structures in the jump region, an obstacle with a varying height is placed at the edge of the impinged plate. Jump structures and the transitions between them are distinguished by virtue of the appearance of a separation bubble on the bottom surface and/or a roller underneath the interface in the jump region. The results show that the hydraulic jump in itself reduces the local Nusselt number, whereas the roller underneath the free surface slightly improves the heat transfer. The minimum heat transfer rate occurs right before the separation bubble (at the separation point); however, the local stagnation point ahead of the separation bubble increases the Nusselt number.</description><subject>Bubbles</subject><subject>Circular hydraulic jumps</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Flat surfaces</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Hydraulic jump</subject><subject>Hydraulics</subject><subject>Jet impingement</subject><subject>Nusselt number</subject><subject>Plates (structural members)</subject><subject>Roller</subject><subject>Separation</subject><subject>Separation bubble</subject><subject>Stagnation point</subject><subject>Surface jets</subject><subject>Viscosity</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwHyJx4dKSj34kN9AEDDRpFzhHaeKyVFu7OS3S_j2dCicunCzLrx7bDyF3nKWc8eK-SUOzAdvvbIw92jbWgKlgXKecKyXkGZlxVepEcKXPyYwxXiZacnZJrmJsTi3LihlZL0cG_QXQ0NJ-A3Rz9GiHbXC0GXZ7ivAZupZ2NXUB3bC1SGsESOKAtXVAt-EwBE8b6OM1uajtNsLNT52Tj-en98UyWa1fXhePq8RlrOwTnamyZJXIGLdVkRdCC1CqKBVwneeeW1u4QkoxXumqDJguvfZcyty7uvKZlnNyO3H32B0GiL1pugHbcaURUrJc5ZlkY-phSjnsYkSozR7DzuLRcGZOGk1j_mo0J41m0jgi3iYEjN98hXEaXYDWgQ8Irje-C_-HfQOvjYdj</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Askarizadeh, Hossein</creator><creator>Ahmadikia, Hossein</creator><creator>Ehrenpreis, Claas</creator><creator>Kneer, Reinhold</creator><creator>Pishevar, Ahmadreza</creator><creator>Rohlfs, Wilko</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202001</creationdate><title>Heat transfer in the hydraulic jump region of circular free-surface liquid jets</title><author>Askarizadeh, Hossein ; Ahmadikia, Hossein ; Ehrenpreis, Claas ; Kneer, Reinhold ; Pishevar, Ahmadreza ; Rohlfs, Wilko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-948770b2401ab656292e88678e1955d1aa6c6332170cb4e097d9d1335dcfbd493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bubbles</topic><topic>Circular hydraulic jumps</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Flat surfaces</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Hydraulic jump</topic><topic>Hydraulics</topic><topic>Jet impingement</topic><topic>Nusselt number</topic><topic>Plates (structural members)</topic><topic>Roller</topic><topic>Separation</topic><topic>Separation bubble</topic><topic>Stagnation point</topic><topic>Surface jets</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Askarizadeh, Hossein</creatorcontrib><creatorcontrib>Ahmadikia, Hossein</creatorcontrib><creatorcontrib>Ehrenpreis, Claas</creatorcontrib><creatorcontrib>Kneer, Reinhold</creatorcontrib><creatorcontrib>Pishevar, Ahmadreza</creatorcontrib><creatorcontrib>Rohlfs, Wilko</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Askarizadeh, Hossein</au><au>Ahmadikia, Hossein</au><au>Ehrenpreis, Claas</au><au>Kneer, Reinhold</au><au>Pishevar, Ahmadreza</au><au>Rohlfs, Wilko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer in the hydraulic jump region of circular free-surface liquid jets</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-01</date><risdate>2020</risdate><volume>146</volume><spage>118823</spage><pages>118823-</pages><artnum>118823</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Accurate capturing of four unique flow structures in the hydraulic jump region.•Definition of distinct flow regimes based on vortex structures.•Detailed investigation of the flow regimes influence on the local heat transfer.•Presenting the obstacle height effect on the flow regimes.•Application of an optimized surface tension model to simulate the hydraulic jump. Because of its high heat transfer potential, liquid jet impingement is broadly used in cooling applications. As a free-surface jet spreads radially after impinging on a flat surface, a hydraulic jump can occur that severely affects the heat transfer. This study numerically scrutinizes the effects of different flow structures within the jump on the local heat transfer of the impinged plate subjected to a uniform heat flux. For the numerical simulations, a modified version of the interFoam solver of OpenFOAM is used, in which the interface compression scheme is amended implementing the continuum surface stress method. To create different flow structures in the jump region, an obstacle with a varying height is placed at the edge of the impinged plate. Jump structures and the transitions between them are distinguished by virtue of the appearance of a separation bubble on the bottom surface and/or a roller underneath the interface in the jump region. The results show that the hydraulic jump in itself reduces the local Nusselt number, whereas the roller underneath the free surface slightly improves the heat transfer. The minimum heat transfer rate occurs right before the separation bubble (at the separation point); however, the local stagnation point ahead of the separation bubble increases the Nusselt number.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.118823</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-01, Vol.146, p.118823, Article 118823
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2330585430
source Elsevier
subjects Bubbles
Circular hydraulic jumps
Computational fluid dynamics
Computer simulation
Flat surfaces
Fluid flow
Free surfaces
Heat flux
Heat transfer
Hydraulic jump
Hydraulics
Jet impingement
Nusselt number
Plates (structural members)
Roller
Separation
Separation bubble
Stagnation point
Surface jets
Viscosity
title Heat transfer in the hydraulic jump region of circular free-surface liquid jets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20in%20the%20hydraulic%20jump%20region%20of%20circular%20free-surface%20liquid%20jets&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Askarizadeh,%20Hossein&rft.date=2020-01&rft.volume=146&rft.spage=118823&rft.pages=118823-&rft.artnum=118823&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.118823&rft_dat=%3Cproquest_cross%3E2330585430%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-948770b2401ab656292e88678e1955d1aa6c6332170cb4e097d9d1335dcfbd493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330585430&rft_id=info:pmid/&rfr_iscdi=true