Loading…

Use of Pluronic P103 Triblock Copolymer as Structural Agent during Synthesis of Hybrid Silver Nanoparticles

Dilute aqueous solutions of triblock copolymer Pluronic P103 were used to synthesize silver nanoparticles (Ag-NPs) by chemical reduction of silver nitrate (AgNO3) with sodium borohydride (NaBH4). This copolymer was used as a structural agent since monomers act as a stabilizer and micelles act as nan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanomaterials 2019, Vol.2019 (2019), p.1-12
Main Authors: Luna-Flores, A., Sánchez-Cantú, Manuel, Flores-Aquino, Eric, Fernández-Escamilla, Victor V. A., Tepale, Nancy, González-Coronel, Valeria J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dilute aqueous solutions of triblock copolymer Pluronic P103 were used to synthesize silver nanoparticles (Ag-NPs) by chemical reduction of silver nitrate (AgNO3) with sodium borohydride (NaBH4). This copolymer was used as a structural agent since monomers act as a stabilizer and micelles act as nanoreactors for nucleation and growth of Ag-NPs. The growth of the nanoparticles (NPs) was monitored by UV-visible spectroscopy on the basis of measuring surface plasmon resonance absorption over a temperature range of 25 to 70°C. Shape and size of hybrid silver/P103 nanomaterials were tuned by varying the micellar structure of Pluronic P103 using a simple synthesis procedure. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) were used to study the size and shape of the hybrid nanomaterials. It was observed that Ag-NPs synthesized without Pluronic P103 at 25°C exhibited a great variety of sizes. However, when Pluronic P103 was used below its critical micellar concentration (CMC), spherical-shaped Ag-NPs with uniform size were formed, suggesting that the copolymer had a stabilizing effect. On the other hand, when Ag-NPs were prepared with Pluronic P103 above the CMC, NPs with similar sizes as the micelles were detected, suggesting that the copolymer functioned as a nanoreactor. Furthermore, as temperature reached 35°C, oval-shaped micelles were formed and small NPs were incorporated into the crown of the micelles. Independent Ag-NPs were not observed since they used the surface of the micelles as a soft template. Therefore, it was possible to obtain tiny Ag-NPs with homogeneous size.
ISSN:1687-4110
1687-4129
DOI:10.1155/2019/9384072