Loading…
Latent variable models for harmonization of test scores: A case study on memory
Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for...
Saved in:
Published in: | Biometrical journal 2020-01, Vol.62 (1), p.34-52 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383 |
---|---|
cites | cdi_FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383 |
container_end_page | 52 |
container_issue | 1 |
container_start_page | 34 |
container_title | Biometrical journal |
container_volume | 62 |
creator | Heuvel, Edwin R. Griffith, Lauren E. Sohel, Nazmul Fortier, Isabel Muniz‐Terrera, Graciela Raina, Parminder |
description | Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for measuring the same characteristics or constructs, the observed variables need to be harmonized in some way to obtain equivalent content information across studies. This paper formulates the main concepts for harmonizing test scores from different observational studies in terms of latent variable models. The concepts are formulated in terms of calibration, invariance, and exchangeability. Although similar ideas are present in measurement reliability and test equating, harmonization is different from measurement invariance and generalizes test equating. In addition, if a test score needs to be transformed to another test score, harmonization of variables is only possible under specific conditions. Observed test scores that connect all of the different studies, are necessary to be able to test the underlying assumptions of harmonization. The concepts of harmonization are illustrated on multiple memory test scores from three different Canadian studies. |
doi_str_mv | 10.1002/bimj.201800146 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2331715671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331715671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYmNw5Ygice5w4jZpuY2Jj6GhXeBcpZ0rOrXNSFpQ-fV02uDKwfLBj19bD2OXAqYCQN5kZb2ZShAxgAjVERuLSIogBFTHbAwoMcA41CN25v0GABII5SkboYhi1EqP2WppWmpa_mlcabKKeG3XVHleWMffjattU36btrQNtwVvybfc59aRv-UznhtP3LfduufDvKbauv6cnRSm8nRx6BP29nD_On8KlqvHxXy2DHLESAQJgcpMLnQe6ixLIDaFJB0hYZYbXcQERmG0q0QRCalBGoGQ5BpjCDHGCbve526d_eiGv9KN7VwznEwlotAiUloM1HRP5c5676hIt66sjetTAenOX7rzl_75GxauDrFdVtP6D_8VNgDhHvgqK-r_iUvvFi_PEpTAHzK2elI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331715671</pqid></control><display><type>article</type><title>Latent variable models for harmonization of test scores: A case study on memory</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Heuvel, Edwin R. ; Griffith, Lauren E. ; Sohel, Nazmul ; Fortier, Isabel ; Muniz‐Terrera, Graciela ; Raina, Parminder</creator><creatorcontrib>Heuvel, Edwin R. ; Griffith, Lauren E. ; Sohel, Nazmul ; Fortier, Isabel ; Muniz‐Terrera, Graciela ; Raina, Parminder</creatorcontrib><description>Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for measuring the same characteristics or constructs, the observed variables need to be harmonized in some way to obtain equivalent content information across studies. This paper formulates the main concepts for harmonizing test scores from different observational studies in terms of latent variable models. The concepts are formulated in terms of calibration, invariance, and exchangeability. Although similar ideas are present in measurement reliability and test equating, harmonization is different from measurement invariance and generalizes test equating. In addition, if a test score needs to be transformed to another test score, harmonization of variables is only possible under specific conditions. Observed test scores that connect all of the different studies, are necessary to be able to test the underlying assumptions of harmonization. The concepts of harmonization are illustrated on multiple memory test scores from three different Canadian studies.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201800146</identifier><identifier>PMID: 31583767</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Aged ; Aged, 80 and over ; Aging - physiology ; agreement ; Biometry - methods ; Calibration ; content equivalence ; factorial invariance ; Female ; harmonization ; Humans ; individual participants data ; Invariance ; latent variable models ; Male ; measurement reliability ; Measuring instruments ; Memory ; Meta-analysis ; Models, Statistical ; Observational Studies as Topic</subject><ispartof>Biometrical journal, 2020-01, Vol.62 (1), p.34-52</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383</citedby><cites>FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383</cites><orcidid>0000-0001-9157-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31583767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heuvel, Edwin R.</creatorcontrib><creatorcontrib>Griffith, Lauren E.</creatorcontrib><creatorcontrib>Sohel, Nazmul</creatorcontrib><creatorcontrib>Fortier, Isabel</creatorcontrib><creatorcontrib>Muniz‐Terrera, Graciela</creatorcontrib><creatorcontrib>Raina, Parminder</creatorcontrib><title>Latent variable models for harmonization of test scores: A case study on memory</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for measuring the same characteristics or constructs, the observed variables need to be harmonized in some way to obtain equivalent content information across studies. This paper formulates the main concepts for harmonizing test scores from different observational studies in terms of latent variable models. The concepts are formulated in terms of calibration, invariance, and exchangeability. Although similar ideas are present in measurement reliability and test equating, harmonization is different from measurement invariance and generalizes test equating. In addition, if a test score needs to be transformed to another test score, harmonization of variables is only possible under specific conditions. Observed test scores that connect all of the different studies, are necessary to be able to test the underlying assumptions of harmonization. The concepts of harmonization are illustrated on multiple memory test scores from three different Canadian studies.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging - physiology</subject><subject>agreement</subject><subject>Biometry - methods</subject><subject>Calibration</subject><subject>content equivalence</subject><subject>factorial invariance</subject><subject>Female</subject><subject>harmonization</subject><subject>Humans</subject><subject>individual participants data</subject><subject>Invariance</subject><subject>latent variable models</subject><subject>Male</subject><subject>measurement reliability</subject><subject>Measuring instruments</subject><subject>Memory</subject><subject>Meta-analysis</subject><subject>Models, Statistical</subject><subject>Observational Studies as Topic</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEYmNw5Ygice5w4jZpuY2Jj6GhXeBcpZ0rOrXNSFpQ-fV02uDKwfLBj19bD2OXAqYCQN5kZb2ZShAxgAjVERuLSIogBFTHbAwoMcA41CN25v0GABII5SkboYhi1EqP2WppWmpa_mlcabKKeG3XVHleWMffjattU36btrQNtwVvybfc59aRv-UznhtP3LfduufDvKbauv6cnRSm8nRx6BP29nD_On8KlqvHxXy2DHLESAQJgcpMLnQe6ixLIDaFJB0hYZYbXcQERmG0q0QRCalBGoGQ5BpjCDHGCbve526d_eiGv9KN7VwznEwlotAiUloM1HRP5c5676hIt66sjetTAenOX7rzl_75GxauDrFdVtP6D_8VNgDhHvgqK-r_iUvvFi_PEpTAHzK2elI</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Heuvel, Edwin R.</creator><creator>Griffith, Lauren E.</creator><creator>Sohel, Nazmul</creator><creator>Fortier, Isabel</creator><creator>Muniz‐Terrera, Graciela</creator><creator>Raina, Parminder</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9157-7224</orcidid></search><sort><creationdate>202001</creationdate><title>Latent variable models for harmonization of test scores: A case study on memory</title><author>Heuvel, Edwin R. ; Griffith, Lauren E. ; Sohel, Nazmul ; Fortier, Isabel ; Muniz‐Terrera, Graciela ; Raina, Parminder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging - physiology</topic><topic>agreement</topic><topic>Biometry - methods</topic><topic>Calibration</topic><topic>content equivalence</topic><topic>factorial invariance</topic><topic>Female</topic><topic>harmonization</topic><topic>Humans</topic><topic>individual participants data</topic><topic>Invariance</topic><topic>latent variable models</topic><topic>Male</topic><topic>measurement reliability</topic><topic>Measuring instruments</topic><topic>Memory</topic><topic>Meta-analysis</topic><topic>Models, Statistical</topic><topic>Observational Studies as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heuvel, Edwin R.</creatorcontrib><creatorcontrib>Griffith, Lauren E.</creatorcontrib><creatorcontrib>Sohel, Nazmul</creatorcontrib><creatorcontrib>Fortier, Isabel</creatorcontrib><creatorcontrib>Muniz‐Terrera, Graciela</creatorcontrib><creatorcontrib>Raina, Parminder</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heuvel, Edwin R.</au><au>Griffith, Lauren E.</au><au>Sohel, Nazmul</au><au>Fortier, Isabel</au><au>Muniz‐Terrera, Graciela</au><au>Raina, Parminder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent variable models for harmonization of test scores: A case study on memory</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2020-01</date><risdate>2020</risdate><volume>62</volume><issue>1</issue><spage>34</spage><epage>52</epage><pages>34-52</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for measuring the same characteristics or constructs, the observed variables need to be harmonized in some way to obtain equivalent content information across studies. This paper formulates the main concepts for harmonizing test scores from different observational studies in terms of latent variable models. The concepts are formulated in terms of calibration, invariance, and exchangeability. Although similar ideas are present in measurement reliability and test equating, harmonization is different from measurement invariance and generalizes test equating. In addition, if a test score needs to be transformed to another test score, harmonization of variables is only possible under specific conditions. Observed test scores that connect all of the different studies, are necessary to be able to test the underlying assumptions of harmonization. The concepts of harmonization are illustrated on multiple memory test scores from three different Canadian studies.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>31583767</pmid><doi>10.1002/bimj.201800146</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9157-7224</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2020-01, Vol.62 (1), p.34-52 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_journals_2331715671 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aged Aged, 80 and over Aging - physiology agreement Biometry - methods Calibration content equivalence factorial invariance Female harmonization Humans individual participants data Invariance latent variable models Male measurement reliability Measuring instruments Memory Meta-analysis Models, Statistical Observational Studies as Topic |
title | Latent variable models for harmonization of test scores: A case study on memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20variable%20models%20for%20harmonization%20of%20test%20scores:%20A%20case%20study%20on%20memory&rft.jtitle=Biometrical%20journal&rft.au=Heuvel,%20Edwin%20R.&rft.date=2020-01&rft.volume=62&rft.issue=1&rft.spage=34&rft.epage=52&rft.pages=34-52&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201800146&rft_dat=%3Cproquest_cross%3E2331715671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331715671&rft_id=info:pmid/31583767&rfr_iscdi=true |