Loading…

Latent variable models for harmonization of test scores: A case study on memory

Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for...

Full description

Saved in:
Bibliographic Details
Published in:Biometrical journal 2020-01, Vol.62 (1), p.34-52
Main Authors: Heuvel, Edwin R., Griffith, Lauren E., Sohel, Nazmul, Fortier, Isabel, Muniz‐Terrera, Graciela, Raina, Parminder
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383
cites cdi_FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383
container_end_page 52
container_issue 1
container_start_page 34
container_title Biometrical journal
container_volume 62
creator Heuvel, Edwin R.
Griffith, Lauren E.
Sohel, Nazmul
Fortier, Isabel
Muniz‐Terrera, Graciela
Raina, Parminder
description Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for measuring the same characteristics or constructs, the observed variables need to be harmonized in some way to obtain equivalent content information across studies. This paper formulates the main concepts for harmonizing test scores from different observational studies in terms of latent variable models. The concepts are formulated in terms of calibration, invariance, and exchangeability. Although similar ideas are present in measurement reliability and test equating, harmonization is different from measurement invariance and generalizes test equating. In addition, if a test score needs to be transformed to another test score, harmonization of variables is only possible under specific conditions. Observed test scores that connect all of the different studies, are necessary to be able to test the underlying assumptions of harmonization. The concepts of harmonization are illustrated on multiple memory test scores from three different Canadian studies.
doi_str_mv 10.1002/bimj.201800146
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2331715671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331715671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYmNw5Ygice5w4jZpuY2Jj6GhXeBcpZ0rOrXNSFpQ-fV02uDKwfLBj19bD2OXAqYCQN5kZb2ZShAxgAjVERuLSIogBFTHbAwoMcA41CN25v0GABII5SkboYhi1EqP2WppWmpa_mlcabKKeG3XVHleWMffjattU36btrQNtwVvybfc59aRv-UznhtP3LfduufDvKbauv6cnRSm8nRx6BP29nD_On8KlqvHxXy2DHLESAQJgcpMLnQe6ixLIDaFJB0hYZYbXcQERmG0q0QRCalBGoGQ5BpjCDHGCbve526d_eiGv9KN7VwznEwlotAiUloM1HRP5c5676hIt66sjetTAenOX7rzl_75GxauDrFdVtP6D_8VNgDhHvgqK-r_iUvvFi_PEpTAHzK2elI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331715671</pqid></control><display><type>article</type><title>Latent variable models for harmonization of test scores: A case study on memory</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Heuvel, Edwin R. ; Griffith, Lauren E. ; Sohel, Nazmul ; Fortier, Isabel ; Muniz‐Terrera, Graciela ; Raina, Parminder</creator><creatorcontrib>Heuvel, Edwin R. ; Griffith, Lauren E. ; Sohel, Nazmul ; Fortier, Isabel ; Muniz‐Terrera, Graciela ; Raina, Parminder</creatorcontrib><description>Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for measuring the same characteristics or constructs, the observed variables need to be harmonized in some way to obtain equivalent content information across studies. This paper formulates the main concepts for harmonizing test scores from different observational studies in terms of latent variable models. The concepts are formulated in terms of calibration, invariance, and exchangeability. Although similar ideas are present in measurement reliability and test equating, harmonization is different from measurement invariance and generalizes test equating. In addition, if a test score needs to be transformed to another test score, harmonization of variables is only possible under specific conditions. Observed test scores that connect all of the different studies, are necessary to be able to test the underlying assumptions of harmonization. The concepts of harmonization are illustrated on multiple memory test scores from three different Canadian studies.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201800146</identifier><identifier>PMID: 31583767</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Aged ; Aged, 80 and over ; Aging - physiology ; agreement ; Biometry - methods ; Calibration ; content equivalence ; factorial invariance ; Female ; harmonization ; Humans ; individual participants data ; Invariance ; latent variable models ; Male ; measurement reliability ; Measuring instruments ; Memory ; Meta-analysis ; Models, Statistical ; Observational Studies as Topic</subject><ispartof>Biometrical journal, 2020-01, Vol.62 (1), p.34-52</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383</citedby><cites>FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383</cites><orcidid>0000-0001-9157-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31583767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heuvel, Edwin R.</creatorcontrib><creatorcontrib>Griffith, Lauren E.</creatorcontrib><creatorcontrib>Sohel, Nazmul</creatorcontrib><creatorcontrib>Fortier, Isabel</creatorcontrib><creatorcontrib>Muniz‐Terrera, Graciela</creatorcontrib><creatorcontrib>Raina, Parminder</creatorcontrib><title>Latent variable models for harmonization of test scores: A case study on memory</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for measuring the same characteristics or constructs, the observed variables need to be harmonized in some way to obtain equivalent content information across studies. This paper formulates the main concepts for harmonizing test scores from different observational studies in terms of latent variable models. The concepts are formulated in terms of calibration, invariance, and exchangeability. Although similar ideas are present in measurement reliability and test equating, harmonization is different from measurement invariance and generalizes test equating. In addition, if a test score needs to be transformed to another test score, harmonization of variables is only possible under specific conditions. Observed test scores that connect all of the different studies, are necessary to be able to test the underlying assumptions of harmonization. The concepts of harmonization are illustrated on multiple memory test scores from three different Canadian studies.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging - physiology</subject><subject>agreement</subject><subject>Biometry - methods</subject><subject>Calibration</subject><subject>content equivalence</subject><subject>factorial invariance</subject><subject>Female</subject><subject>harmonization</subject><subject>Humans</subject><subject>individual participants data</subject><subject>Invariance</subject><subject>latent variable models</subject><subject>Male</subject><subject>measurement reliability</subject><subject>Measuring instruments</subject><subject>Memory</subject><subject>Meta-analysis</subject><subject>Models, Statistical</subject><subject>Observational Studies as Topic</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEYmNw5Ygice5w4jZpuY2Jj6GhXeBcpZ0rOrXNSFpQ-fV02uDKwfLBj19bD2OXAqYCQN5kZb2ZShAxgAjVERuLSIogBFTHbAwoMcA41CN25v0GABII5SkboYhi1EqP2WppWmpa_mlcabKKeG3XVHleWMffjattU36btrQNtwVvybfc59aRv-UznhtP3LfduufDvKbauv6cnRSm8nRx6BP29nD_On8KlqvHxXy2DHLESAQJgcpMLnQe6ixLIDaFJB0hYZYbXcQERmG0q0QRCalBGoGQ5BpjCDHGCbve526d_eiGv9KN7VwznEwlotAiUloM1HRP5c5676hIt66sjetTAenOX7rzl_75GxauDrFdVtP6D_8VNgDhHvgqK-r_iUvvFi_PEpTAHzK2elI</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Heuvel, Edwin R.</creator><creator>Griffith, Lauren E.</creator><creator>Sohel, Nazmul</creator><creator>Fortier, Isabel</creator><creator>Muniz‐Terrera, Graciela</creator><creator>Raina, Parminder</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9157-7224</orcidid></search><sort><creationdate>202001</creationdate><title>Latent variable models for harmonization of test scores: A case study on memory</title><author>Heuvel, Edwin R. ; Griffith, Lauren E. ; Sohel, Nazmul ; Fortier, Isabel ; Muniz‐Terrera, Graciela ; Raina, Parminder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging - physiology</topic><topic>agreement</topic><topic>Biometry - methods</topic><topic>Calibration</topic><topic>content equivalence</topic><topic>factorial invariance</topic><topic>Female</topic><topic>harmonization</topic><topic>Humans</topic><topic>individual participants data</topic><topic>Invariance</topic><topic>latent variable models</topic><topic>Male</topic><topic>measurement reliability</topic><topic>Measuring instruments</topic><topic>Memory</topic><topic>Meta-analysis</topic><topic>Models, Statistical</topic><topic>Observational Studies as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heuvel, Edwin R.</creatorcontrib><creatorcontrib>Griffith, Lauren E.</creatorcontrib><creatorcontrib>Sohel, Nazmul</creatorcontrib><creatorcontrib>Fortier, Isabel</creatorcontrib><creatorcontrib>Muniz‐Terrera, Graciela</creatorcontrib><creatorcontrib>Raina, Parminder</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heuvel, Edwin R.</au><au>Griffith, Lauren E.</au><au>Sohel, Nazmul</au><au>Fortier, Isabel</au><au>Muniz‐Terrera, Graciela</au><au>Raina, Parminder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent variable models for harmonization of test scores: A case study on memory</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2020-01</date><risdate>2020</risdate><volume>62</volume><issue>1</issue><spage>34</spage><epage>52</epage><pages>34-52</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Combining data from different studies has a long tradition within the scientific community. It requires that the same information is collected from each study to be able to pool individual data. When studies have implemented different methods or used different instruments (e.g., questionnaires) for measuring the same characteristics or constructs, the observed variables need to be harmonized in some way to obtain equivalent content information across studies. This paper formulates the main concepts for harmonizing test scores from different observational studies in terms of latent variable models. The concepts are formulated in terms of calibration, invariance, and exchangeability. Although similar ideas are present in measurement reliability and test equating, harmonization is different from measurement invariance and generalizes test equating. In addition, if a test score needs to be transformed to another test score, harmonization of variables is only possible under specific conditions. Observed test scores that connect all of the different studies, are necessary to be able to test the underlying assumptions of harmonization. The concepts of harmonization are illustrated on multiple memory test scores from three different Canadian studies.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>31583767</pmid><doi>10.1002/bimj.201800146</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9157-7224</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2020-01, Vol.62 (1), p.34-52
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_journals_2331715671
source Wiley-Blackwell Read & Publish Collection
subjects Aged
Aged, 80 and over
Aging - physiology
agreement
Biometry - methods
Calibration
content equivalence
factorial invariance
Female
harmonization
Humans
individual participants data
Invariance
latent variable models
Male
measurement reliability
Measuring instruments
Memory
Meta-analysis
Models, Statistical
Observational Studies as Topic
title Latent variable models for harmonization of test scores: A case study on memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20variable%20models%20for%20harmonization%20of%20test%20scores:%20A%20case%20study%20on%20memory&rft.jtitle=Biometrical%20journal&rft.au=Heuvel,%20Edwin%20R.&rft.date=2020-01&rft.volume=62&rft.issue=1&rft.spage=34&rft.epage=52&rft.pages=34-52&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201800146&rft_dat=%3Cproquest_cross%3E2331715671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3351-9e06bac17c47bb908af2e753e3bca7f8e0a635a63596ee12702a1309c73804383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331715671&rft_id=info:pmid/31583767&rfr_iscdi=true