Loading…

Postdeposition Ligand Exchange Allows Tuning the Transport Properties of Large‐Scale CuInSe2 Quantum Dot Solids

Colloidal quantum dots assembled into quantum dot solids usually suffer from poor conductivity. The most common charge transport mechanism through the solid is hopping transport where the hopping probability depends on the barrier type (stabilizing/connecting ligand molecule) and the interparticle d...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2020-01, Vol.8 (1), p.n/a
Main Authors: Gorris, Friederieke E. S., Deffner, Michael, Priyadarshi, Shekhar, Klinke, Christian, Weller, Horst, Lange, Holger
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced optical materials
container_volume 8
creator Gorris, Friederieke E. S.
Deffner, Michael
Priyadarshi, Shekhar
Klinke, Christian
Weller, Horst
Lange, Holger
description Colloidal quantum dots assembled into quantum dot solids usually suffer from poor conductivity. The most common charge transport mechanism through the solid is hopping transport where the hopping probability depends on the barrier type (stabilizing/connecting ligand molecule) and the interparticle distance. It is demonstrated that the electronic structure of the ligand molecule strongly alters the transport behavior through CuInSe2 quantum dot solids. Transport measurements and optical‐pump terahertz‐probe experiments after a ligand exchange to fully conjugated molecules show an increase of the conductivity by orders of magnitude, as well as a change of the hopping transport mechanism. This change is not due to a reduced interparticle distance, but the electronic structure: the obtained frequency‐dependent complex conductivities point toward an efficient hole transport enabled by an alignment of the quantum dot valence bands and ligand states. By exchanging the connecting molecules in quantum dot solids, the conductivity can be strongly enhanced. THz and transport studies show that not only the molecule length, but also its electronic structure is important: mobility increases by orders of magnitude can be achieved.
doi_str_mv 10.1002/adom.201901058
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2332008824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332008824</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-aee08f40f128ef9806f7aaa00e6801ef94cdeb7f6fc286c0db047cb4c89a28313</originalsourceid><addsrcrecordid>eNpNkNFOwjAUhhejiUS59bqJ18PTbmzdJQFUkhkw4HVTtnaUjHa0XZA7H8Fn9EkcwRCvzjl_vpw_-YLgAcMAA5AnXprdgADOAMOQXgU9grNhiCHF1__226Dv3Bagg9Ioi9NesF8Y50vRGKe8MhrlquK6RNPPYsN1JdCors3BoVWrla6Q3wi0sly7xliPFtY0wnolHDIS5dxW4ufre1nwWqBxO9NLQdB7y7Vvd2hiPFqaWpXuPriRvHai_zfvgo_n6Wr8Gubzl9l4lIcNiSIaciGAyhgkJlTIjEIiU845gEgo4C6Ji1KsU5nIgtCkgHINcVqs44JmnNAIR3fB4_lvY82-Fc6zrWmt7ipZV0AAKCVxR2Vn6qBqcWSNVTtujwwDO2llJ63sopWNJvO3yxX9ArOacBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332008824</pqid></control><display><type>article</type><title>Postdeposition Ligand Exchange Allows Tuning the Transport Properties of Large‐Scale CuInSe2 Quantum Dot Solids</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gorris, Friederieke E. S. ; Deffner, Michael ; Priyadarshi, Shekhar ; Klinke, Christian ; Weller, Horst ; Lange, Holger</creator><creatorcontrib>Gorris, Friederieke E. S. ; Deffner, Michael ; Priyadarshi, Shekhar ; Klinke, Christian ; Weller, Horst ; Lange, Holger</creatorcontrib><description>Colloidal quantum dots assembled into quantum dot solids usually suffer from poor conductivity. The most common charge transport mechanism through the solid is hopping transport where the hopping probability depends on the barrier type (stabilizing/connecting ligand molecule) and the interparticle distance. It is demonstrated that the electronic structure of the ligand molecule strongly alters the transport behavior through CuInSe2 quantum dot solids. Transport measurements and optical‐pump terahertz‐probe experiments after a ligand exchange to fully conjugated molecules show an increase of the conductivity by orders of magnitude, as well as a change of the hopping transport mechanism. This change is not due to a reduced interparticle distance, but the electronic structure: the obtained frequency‐dependent complex conductivities point toward an efficient hole transport enabled by an alignment of the quantum dot valence bands and ligand states. By exchanging the connecting molecules in quantum dot solids, the conductivity can be strongly enhanced. THz and transport studies show that not only the molecule length, but also its electronic structure is important: mobility increases by orders of magnitude can be achieved.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201901058</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Conductivity ; Copper indium selenides ; Electronic structure ; Electrons ; Exchanging ; hopping transport ; ligand exchange ; Ligands ; Materials science ; Molecular structure ; Optics ; photocunductivty ; quantum dot solids ; Quantum dots ; THz spectroscopy ; Transport phenomena ; Transport properties ; Valence band</subject><ispartof>Advanced optical materials, 2020-01, Vol.8 (1), p.n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8558-7389 ; 0000-0002-4236-2806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gorris, Friederieke E. S.</creatorcontrib><creatorcontrib>Deffner, Michael</creatorcontrib><creatorcontrib>Priyadarshi, Shekhar</creatorcontrib><creatorcontrib>Klinke, Christian</creatorcontrib><creatorcontrib>Weller, Horst</creatorcontrib><creatorcontrib>Lange, Holger</creatorcontrib><title>Postdeposition Ligand Exchange Allows Tuning the Transport Properties of Large‐Scale CuInSe2 Quantum Dot Solids</title><title>Advanced optical materials</title><description>Colloidal quantum dots assembled into quantum dot solids usually suffer from poor conductivity. The most common charge transport mechanism through the solid is hopping transport where the hopping probability depends on the barrier type (stabilizing/connecting ligand molecule) and the interparticle distance. It is demonstrated that the electronic structure of the ligand molecule strongly alters the transport behavior through CuInSe2 quantum dot solids. Transport measurements and optical‐pump terahertz‐probe experiments after a ligand exchange to fully conjugated molecules show an increase of the conductivity by orders of magnitude, as well as a change of the hopping transport mechanism. This change is not due to a reduced interparticle distance, but the electronic structure: the obtained frequency‐dependent complex conductivities point toward an efficient hole transport enabled by an alignment of the quantum dot valence bands and ligand states. By exchanging the connecting molecules in quantum dot solids, the conductivity can be strongly enhanced. THz and transport studies show that not only the molecule length, but also its electronic structure is important: mobility increases by orders of magnitude can be achieved.</description><subject>Charge transport</subject><subject>Conductivity</subject><subject>Copper indium selenides</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Exchanging</subject><subject>hopping transport</subject><subject>ligand exchange</subject><subject>Ligands</subject><subject>Materials science</subject><subject>Molecular structure</subject><subject>Optics</subject><subject>photocunductivty</subject><subject>quantum dot solids</subject><subject>Quantum dots</subject><subject>THz spectroscopy</subject><subject>Transport phenomena</subject><subject>Transport properties</subject><subject>Valence band</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpNkNFOwjAUhhejiUS59bqJ18PTbmzdJQFUkhkw4HVTtnaUjHa0XZA7H8Fn9EkcwRCvzjl_vpw_-YLgAcMAA5AnXprdgADOAMOQXgU9grNhiCHF1__226Dv3Bagg9Ioi9NesF8Y50vRGKe8MhrlquK6RNPPYsN1JdCors3BoVWrla6Q3wi0sly7xliPFtY0wnolHDIS5dxW4ufre1nwWqBxO9NLQdB7y7Vvd2hiPFqaWpXuPriRvHai_zfvgo_n6Wr8Gubzl9l4lIcNiSIaciGAyhgkJlTIjEIiU845gEgo4C6Ji1KsU5nIgtCkgHINcVqs44JmnNAIR3fB4_lvY82-Fc6zrWmt7ipZV0AAKCVxR2Vn6qBqcWSNVTtujwwDO2llJ63sopWNJvO3yxX9ArOacBU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Gorris, Friederieke E. S.</creator><creator>Deffner, Michael</creator><creator>Priyadarshi, Shekhar</creator><creator>Klinke, Christian</creator><creator>Weller, Horst</creator><creator>Lange, Holger</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8558-7389</orcidid><orcidid>https://orcid.org/0000-0002-4236-2806</orcidid></search><sort><creationdate>20200101</creationdate><title>Postdeposition Ligand Exchange Allows Tuning the Transport Properties of Large‐Scale CuInSe2 Quantum Dot Solids</title><author>Gorris, Friederieke E. S. ; Deffner, Michael ; Priyadarshi, Shekhar ; Klinke, Christian ; Weller, Horst ; Lange, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-aee08f40f128ef9806f7aaa00e6801ef94cdeb7f6fc286c0db047cb4c89a28313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transport</topic><topic>Conductivity</topic><topic>Copper indium selenides</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Exchanging</topic><topic>hopping transport</topic><topic>ligand exchange</topic><topic>Ligands</topic><topic>Materials science</topic><topic>Molecular structure</topic><topic>Optics</topic><topic>photocunductivty</topic><topic>quantum dot solids</topic><topic>Quantum dots</topic><topic>THz spectroscopy</topic><topic>Transport phenomena</topic><topic>Transport properties</topic><topic>Valence band</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorris, Friederieke E. S.</creatorcontrib><creatorcontrib>Deffner, Michael</creatorcontrib><creatorcontrib>Priyadarshi, Shekhar</creatorcontrib><creatorcontrib>Klinke, Christian</creatorcontrib><creatorcontrib>Weller, Horst</creatorcontrib><creatorcontrib>Lange, Holger</creatorcontrib><collection>Wiley-Blackwell Open Access Titles (Open Access)</collection><collection>Wiley Online Library website</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorris, Friederieke E. S.</au><au>Deffner, Michael</au><au>Priyadarshi, Shekhar</au><au>Klinke, Christian</au><au>Weller, Horst</au><au>Lange, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postdeposition Ligand Exchange Allows Tuning the Transport Properties of Large‐Scale CuInSe2 Quantum Dot Solids</atitle><jtitle>Advanced optical materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>1</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Colloidal quantum dots assembled into quantum dot solids usually suffer from poor conductivity. The most common charge transport mechanism through the solid is hopping transport where the hopping probability depends on the barrier type (stabilizing/connecting ligand molecule) and the interparticle distance. It is demonstrated that the electronic structure of the ligand molecule strongly alters the transport behavior through CuInSe2 quantum dot solids. Transport measurements and optical‐pump terahertz‐probe experiments after a ligand exchange to fully conjugated molecules show an increase of the conductivity by orders of magnitude, as well as a change of the hopping transport mechanism. This change is not due to a reduced interparticle distance, but the electronic structure: the obtained frequency‐dependent complex conductivities point toward an efficient hole transport enabled by an alignment of the quantum dot valence bands and ligand states. By exchanging the connecting molecules in quantum dot solids, the conductivity can be strongly enhanced. THz and transport studies show that not only the molecule length, but also its electronic structure is important: mobility increases by orders of magnitude can be achieved.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201901058</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8558-7389</orcidid><orcidid>https://orcid.org/0000-0002-4236-2806</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2020-01, Vol.8 (1), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2332008824
source Wiley-Blackwell Read & Publish Collection
subjects Charge transport
Conductivity
Copper indium selenides
Electronic structure
Electrons
Exchanging
hopping transport
ligand exchange
Ligands
Materials science
Molecular structure
Optics
photocunductivty
quantum dot solids
Quantum dots
THz spectroscopy
Transport phenomena
Transport properties
Valence band
title Postdeposition Ligand Exchange Allows Tuning the Transport Properties of Large‐Scale CuInSe2 Quantum Dot Solids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postdeposition%20Ligand%20Exchange%20Allows%20Tuning%20the%20Transport%20Properties%20of%20Large%E2%80%90Scale%20CuInSe2%20Quantum%20Dot%20Solids&rft.jtitle=Advanced%20optical%20materials&rft.au=Gorris,%20Friederieke%20E.%20S.&rft.date=2020-01-01&rft.volume=8&rft.issue=1&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201901058&rft_dat=%3Cproquest_wiley%3E2332008824%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2338-aee08f40f128ef9806f7aaa00e6801ef94cdeb7f6fc286c0db047cb4c89a28313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2332008824&rft_id=info:pmid/&rfr_iscdi=true