Loading…
Biomaterial‐Induction of a Transplantable Angiosome
Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nont...
Saved in:
Published in: | Advanced functional materials 2020-01, Vol.30 (1), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573 |
---|---|
cites | cdi_FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Charbonnier, Baptiste Maillard, Sophie Sayed, Omaer Baradaran, Aslan Mangat, Harshdeep Dalisson, Benjamin Zhang, Zishuai Zhang, Yu‐Ling Hussain, Sabah N. A. Mayaki, Dominique Seitz, Hermann Harvey, Edward J. Gilardino, Mirko Gbureck, Uwe Makhoul, Nicholas Barralet, Jake |
description | Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nontrivial and involves pressurizing a vein graft by its surgical attachment to an artery forming an arteriovenous loop (AVL). Material induction of a venous angiosome is reported, by placement of a 3D printed microporous monetite scaffold around a vein and its transplantability is further demonstrated. When the transplanted venosome is cut, it bleeds, illustrating potential reconstructive functionality. The volume of blood vessels generated by biomaterial‐induction is as great as by AVL. Direct contact of the material with the vein does not appear to be critical to luminal sprouting, and wrapping the implant in a silicone membrane significantly reduces sprouting. Pilot studies with microporous polymeric scaffolds induce far less vascular invasion. After 4 weeks, monetite scaffolds are extensively vascularized and can be transplanted to an arterial vessel. This report is significant since a lack of tools to control vascular generation is an impediment to the treatment of several conditions that give rise to tissue ischemia and tissue reconstruction.
Luminal branching is unexpectedly induced simply by placing a vein within microporous calcium phosphate. Only osteoinductive biomaterials have been reported previously, and this is thought to be the first report of an angio‐inductive material. The data point to a possible bioinorganic effect, wherein the degradation of the material both releases a stimulatory ionic milieu and creates space for the developing angiosome. |
doi_str_mv | 10.1002/adfm.201905115 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332009772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332009772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573</originalsourceid><addsrcrecordid>eNqFkLFOwzAQQC0EEqWwMkdiTjnbsV2PpVCoVMRSJDbLsS8oVRIXOxXqxifwjXwJrYpgZLob3ruTHiGXFEYUgF1bX7UjBlSDoFQckQGVVOYc2Pj4d6cvp-QspRUAVYoXAyJu6tDaHmNtm6-Pz3nnN66vQ5eFKrPZMtourRvb9bZsMJt0r3VIocVzclLZJuHFzxyS59ndcvqQL57u59PJIndcFyIXhZbMi5IDOEZBsUI6bsG5sXRCoPclaqURWIVKa1GWXnou0aF1zlmh-JBcHe6uY3jbYOrNKmxit3tpGOcMQCvFdtToQLkYUopYmXWsWxu3hoLZpzH7NOY3zU7QB-G9bnD7D20mt7PHP_cbV69olA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332009772</pqid></control><display><type>article</type><title>Biomaterial‐Induction of a Transplantable Angiosome</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Charbonnier, Baptiste ; Maillard, Sophie ; Sayed, Omaer ; Baradaran, Aslan ; Mangat, Harshdeep ; Dalisson, Benjamin ; Zhang, Zishuai ; Zhang, Yu‐Ling ; Hussain, Sabah N. A. ; Mayaki, Dominique ; Seitz, Hermann ; Harvey, Edward J. ; Gilardino, Mirko ; Gbureck, Uwe ; Makhoul, Nicholas ; Barralet, Jake</creator><creatorcontrib>Charbonnier, Baptiste ; Maillard, Sophie ; Sayed, Omaer ; Baradaran, Aslan ; Mangat, Harshdeep ; Dalisson, Benjamin ; Zhang, Zishuai ; Zhang, Yu‐Ling ; Hussain, Sabah N. A. ; Mayaki, Dominique ; Seitz, Hermann ; Harvey, Edward J. ; Gilardino, Mirko ; Gbureck, Uwe ; Makhoul, Nicholas ; Barralet, Jake</creatorcontrib><description>Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nontrivial and involves pressurizing a vein graft by its surgical attachment to an artery forming an arteriovenous loop (AVL). Material induction of a venous angiosome is reported, by placement of a 3D printed microporous monetite scaffold around a vein and its transplantability is further demonstrated. When the transplanted venosome is cut, it bleeds, illustrating potential reconstructive functionality. The volume of blood vessels generated by biomaterial‐induction is as great as by AVL. Direct contact of the material with the vein does not appear to be critical to luminal sprouting, and wrapping the implant in a silicone membrane significantly reduces sprouting. Pilot studies with microporous polymeric scaffolds induce far less vascular invasion. After 4 weeks, monetite scaffolds are extensively vascularized and can be transplanted to an arterial vessel. This report is significant since a lack of tools to control vascular generation is an impediment to the treatment of several conditions that give rise to tissue ischemia and tissue reconstruction.
Luminal branching is unexpectedly induced simply by placing a vein within microporous calcium phosphate. Only osteoinductive biomaterials have been reported previously, and this is thought to be the first report of an angio‐inductive material. The data point to a possible bioinorganic effect, wherein the degradation of the material both releases a stimulatory ionic milieu and creates space for the developing angiosome.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201905115</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>angiogenesis ; axial vascularization ; bioceramic ; bioinorganic ; Biomedical materials ; Bleeding ; Blood vessels ; Ischemia ; Materials science ; material–host interactions ; Pressurization ; Scaffolds ; Surgical implants ; Three dimensional printing ; Tissue engineering ; Veins ; Veins & arteries</subject><ispartof>Advanced functional materials, 2020-01, Vol.30 (1), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573</citedby><cites>FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573</cites><orcidid>0000-0003-3543-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Charbonnier, Baptiste</creatorcontrib><creatorcontrib>Maillard, Sophie</creatorcontrib><creatorcontrib>Sayed, Omaer</creatorcontrib><creatorcontrib>Baradaran, Aslan</creatorcontrib><creatorcontrib>Mangat, Harshdeep</creatorcontrib><creatorcontrib>Dalisson, Benjamin</creatorcontrib><creatorcontrib>Zhang, Zishuai</creatorcontrib><creatorcontrib>Zhang, Yu‐Ling</creatorcontrib><creatorcontrib>Hussain, Sabah N. A.</creatorcontrib><creatorcontrib>Mayaki, Dominique</creatorcontrib><creatorcontrib>Seitz, Hermann</creatorcontrib><creatorcontrib>Harvey, Edward J.</creatorcontrib><creatorcontrib>Gilardino, Mirko</creatorcontrib><creatorcontrib>Gbureck, Uwe</creatorcontrib><creatorcontrib>Makhoul, Nicholas</creatorcontrib><creatorcontrib>Barralet, Jake</creatorcontrib><title>Biomaterial‐Induction of a Transplantable Angiosome</title><title>Advanced functional materials</title><description>Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nontrivial and involves pressurizing a vein graft by its surgical attachment to an artery forming an arteriovenous loop (AVL). Material induction of a venous angiosome is reported, by placement of a 3D printed microporous monetite scaffold around a vein and its transplantability is further demonstrated. When the transplanted venosome is cut, it bleeds, illustrating potential reconstructive functionality. The volume of blood vessels generated by biomaterial‐induction is as great as by AVL. Direct contact of the material with the vein does not appear to be critical to luminal sprouting, and wrapping the implant in a silicone membrane significantly reduces sprouting. Pilot studies with microporous polymeric scaffolds induce far less vascular invasion. After 4 weeks, monetite scaffolds are extensively vascularized and can be transplanted to an arterial vessel. This report is significant since a lack of tools to control vascular generation is an impediment to the treatment of several conditions that give rise to tissue ischemia and tissue reconstruction.
Luminal branching is unexpectedly induced simply by placing a vein within microporous calcium phosphate. Only osteoinductive biomaterials have been reported previously, and this is thought to be the first report of an angio‐inductive material. The data point to a possible bioinorganic effect, wherein the degradation of the material both releases a stimulatory ionic milieu and creates space for the developing angiosome.</description><subject>angiogenesis</subject><subject>axial vascularization</subject><subject>bioceramic</subject><subject>bioinorganic</subject><subject>Biomedical materials</subject><subject>Bleeding</subject><subject>Blood vessels</subject><subject>Ischemia</subject><subject>Materials science</subject><subject>material–host interactions</subject><subject>Pressurization</subject><subject>Scaffolds</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Veins</subject><subject>Veins & arteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQQC0EEqWwMkdiTjnbsV2PpVCoVMRSJDbLsS8oVRIXOxXqxifwjXwJrYpgZLob3ruTHiGXFEYUgF1bX7UjBlSDoFQckQGVVOYc2Pj4d6cvp-QspRUAVYoXAyJu6tDaHmNtm6-Pz3nnN66vQ5eFKrPZMtourRvb9bZsMJt0r3VIocVzclLZJuHFzxyS59ndcvqQL57u59PJIndcFyIXhZbMi5IDOEZBsUI6bsG5sXRCoPclaqURWIVKa1GWXnou0aF1zlmh-JBcHe6uY3jbYOrNKmxit3tpGOcMQCvFdtToQLkYUopYmXWsWxu3hoLZpzH7NOY3zU7QB-G9bnD7D20mt7PHP_cbV69olA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Charbonnier, Baptiste</creator><creator>Maillard, Sophie</creator><creator>Sayed, Omaer</creator><creator>Baradaran, Aslan</creator><creator>Mangat, Harshdeep</creator><creator>Dalisson, Benjamin</creator><creator>Zhang, Zishuai</creator><creator>Zhang, Yu‐Ling</creator><creator>Hussain, Sabah N. A.</creator><creator>Mayaki, Dominique</creator><creator>Seitz, Hermann</creator><creator>Harvey, Edward J.</creator><creator>Gilardino, Mirko</creator><creator>Gbureck, Uwe</creator><creator>Makhoul, Nicholas</creator><creator>Barralet, Jake</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3543-6042</orcidid></search><sort><creationdate>20200101</creationdate><title>Biomaterial‐Induction of a Transplantable Angiosome</title><author>Charbonnier, Baptiste ; Maillard, Sophie ; Sayed, Omaer ; Baradaran, Aslan ; Mangat, Harshdeep ; Dalisson, Benjamin ; Zhang, Zishuai ; Zhang, Yu‐Ling ; Hussain, Sabah N. A. ; Mayaki, Dominique ; Seitz, Hermann ; Harvey, Edward J. ; Gilardino, Mirko ; Gbureck, Uwe ; Makhoul, Nicholas ; Barralet, Jake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>angiogenesis</topic><topic>axial vascularization</topic><topic>bioceramic</topic><topic>bioinorganic</topic><topic>Biomedical materials</topic><topic>Bleeding</topic><topic>Blood vessels</topic><topic>Ischemia</topic><topic>Materials science</topic><topic>material–host interactions</topic><topic>Pressurization</topic><topic>Scaffolds</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Veins</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charbonnier, Baptiste</creatorcontrib><creatorcontrib>Maillard, Sophie</creatorcontrib><creatorcontrib>Sayed, Omaer</creatorcontrib><creatorcontrib>Baradaran, Aslan</creatorcontrib><creatorcontrib>Mangat, Harshdeep</creatorcontrib><creatorcontrib>Dalisson, Benjamin</creatorcontrib><creatorcontrib>Zhang, Zishuai</creatorcontrib><creatorcontrib>Zhang, Yu‐Ling</creatorcontrib><creatorcontrib>Hussain, Sabah N. A.</creatorcontrib><creatorcontrib>Mayaki, Dominique</creatorcontrib><creatorcontrib>Seitz, Hermann</creatorcontrib><creatorcontrib>Harvey, Edward J.</creatorcontrib><creatorcontrib>Gilardino, Mirko</creatorcontrib><creatorcontrib>Gbureck, Uwe</creatorcontrib><creatorcontrib>Makhoul, Nicholas</creatorcontrib><creatorcontrib>Barralet, Jake</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charbonnier, Baptiste</au><au>Maillard, Sophie</au><au>Sayed, Omaer</au><au>Baradaran, Aslan</au><au>Mangat, Harshdeep</au><au>Dalisson, Benjamin</au><au>Zhang, Zishuai</au><au>Zhang, Yu‐Ling</au><au>Hussain, Sabah N. A.</au><au>Mayaki, Dominique</au><au>Seitz, Hermann</au><au>Harvey, Edward J.</au><au>Gilardino, Mirko</au><au>Gbureck, Uwe</au><au>Makhoul, Nicholas</au><au>Barralet, Jake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterial‐Induction of a Transplantable Angiosome</atitle><jtitle>Advanced functional materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nontrivial and involves pressurizing a vein graft by its surgical attachment to an artery forming an arteriovenous loop (AVL). Material induction of a venous angiosome is reported, by placement of a 3D printed microporous monetite scaffold around a vein and its transplantability is further demonstrated. When the transplanted venosome is cut, it bleeds, illustrating potential reconstructive functionality. The volume of blood vessels generated by biomaterial‐induction is as great as by AVL. Direct contact of the material with the vein does not appear to be critical to luminal sprouting, and wrapping the implant in a silicone membrane significantly reduces sprouting. Pilot studies with microporous polymeric scaffolds induce far less vascular invasion. After 4 weeks, monetite scaffolds are extensively vascularized and can be transplanted to an arterial vessel. This report is significant since a lack of tools to control vascular generation is an impediment to the treatment of several conditions that give rise to tissue ischemia and tissue reconstruction.
Luminal branching is unexpectedly induced simply by placing a vein within microporous calcium phosphate. Only osteoinductive biomaterials have been reported previously, and this is thought to be the first report of an angio‐inductive material. The data point to a possible bioinorganic effect, wherein the degradation of the material both releases a stimulatory ionic milieu and creates space for the developing angiosome.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201905115</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3543-6042</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-01, Vol.30 (1), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2332009772 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | angiogenesis axial vascularization bioceramic bioinorganic Biomedical materials Bleeding Blood vessels Ischemia Materials science material–host interactions Pressurization Scaffolds Surgical implants Three dimensional printing Tissue engineering Veins Veins & arteries |
title | Biomaterial‐Induction of a Transplantable Angiosome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterial%E2%80%90Induction%20of%20a%20Transplantable%20Angiosome&rft.jtitle=Advanced%20functional%20materials&rft.au=Charbonnier,%20Baptiste&rft.date=2020-01-01&rft.volume=30&rft.issue=1&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201905115&rft_dat=%3Cproquest_cross%3E2332009772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2332009772&rft_id=info:pmid/&rfr_iscdi=true |