Loading…

Biomaterial‐Induction of a Transplantable Angiosome

Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nont...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2020-01, Vol.30 (1), p.n/a
Main Authors: Charbonnier, Baptiste, Maillard, Sophie, Sayed, Omaer, Baradaran, Aslan, Mangat, Harshdeep, Dalisson, Benjamin, Zhang, Zishuai, Zhang, Yu‐Ling, Hussain, Sabah N. A., Mayaki, Dominique, Seitz, Hermann, Harvey, Edward J., Gilardino, Mirko, Gbureck, Uwe, Makhoul, Nicholas, Barralet, Jake
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573
cites cdi_FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced functional materials
container_volume 30
creator Charbonnier, Baptiste
Maillard, Sophie
Sayed, Omaer
Baradaran, Aslan
Mangat, Harshdeep
Dalisson, Benjamin
Zhang, Zishuai
Zhang, Yu‐Ling
Hussain, Sabah N. A.
Mayaki, Dominique
Seitz, Hermann
Harvey, Edward J.
Gilardino, Mirko
Gbureck, Uwe
Makhoul, Nicholas
Barralet, Jake
description Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nontrivial and involves pressurizing a vein graft by its surgical attachment to an artery forming an arteriovenous loop (AVL). Material induction of a venous angiosome is reported, by placement of a 3D printed microporous monetite scaffold around a vein and its transplantability is further demonstrated. When the transplanted venosome is cut, it bleeds, illustrating potential reconstructive functionality. The volume of blood vessels generated by biomaterial‐induction is as great as by AVL. Direct contact of the material with the vein does not appear to be critical to luminal sprouting, and wrapping the implant in a silicone membrane significantly reduces sprouting. Pilot studies with microporous polymeric scaffolds induce far less vascular invasion. After 4 weeks, monetite scaffolds are extensively vascularized and can be transplanted to an arterial vessel. This report is significant since a lack of tools to control vascular generation is an impediment to the treatment of several conditions that give rise to tissue ischemia and tissue reconstruction. Luminal branching is unexpectedly induced simply by placing a vein within microporous calcium phosphate. Only osteoinductive biomaterials have been reported previously, and this is thought to be the first report of an angio‐inductive material. The data point to a possible bioinorganic effect, wherein the degradation of the material both releases a stimulatory ionic milieu and creates space for the developing angiosome.
doi_str_mv 10.1002/adfm.201905115
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332009772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332009772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573</originalsourceid><addsrcrecordid>eNqFkLFOwzAQQC0EEqWwMkdiTjnbsV2PpVCoVMRSJDbLsS8oVRIXOxXqxifwjXwJrYpgZLob3ruTHiGXFEYUgF1bX7UjBlSDoFQckQGVVOYc2Pj4d6cvp-QspRUAVYoXAyJu6tDaHmNtm6-Pz3nnN66vQ5eFKrPZMtourRvb9bZsMJt0r3VIocVzclLZJuHFzxyS59ndcvqQL57u59PJIndcFyIXhZbMi5IDOEZBsUI6bsG5sXRCoPclaqURWIVKa1GWXnou0aF1zlmh-JBcHe6uY3jbYOrNKmxit3tpGOcMQCvFdtToQLkYUopYmXWsWxu3hoLZpzH7NOY3zU7QB-G9bnD7D20mt7PHP_cbV69olA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332009772</pqid></control><display><type>article</type><title>Biomaterial‐Induction of a Transplantable Angiosome</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Charbonnier, Baptiste ; Maillard, Sophie ; Sayed, Omaer ; Baradaran, Aslan ; Mangat, Harshdeep ; Dalisson, Benjamin ; Zhang, Zishuai ; Zhang, Yu‐Ling ; Hussain, Sabah N. A. ; Mayaki, Dominique ; Seitz, Hermann ; Harvey, Edward J. ; Gilardino, Mirko ; Gbureck, Uwe ; Makhoul, Nicholas ; Barralet, Jake</creator><creatorcontrib>Charbonnier, Baptiste ; Maillard, Sophie ; Sayed, Omaer ; Baradaran, Aslan ; Mangat, Harshdeep ; Dalisson, Benjamin ; Zhang, Zishuai ; Zhang, Yu‐Ling ; Hussain, Sabah N. A. ; Mayaki, Dominique ; Seitz, Hermann ; Harvey, Edward J. ; Gilardino, Mirko ; Gbureck, Uwe ; Makhoul, Nicholas ; Barralet, Jake</creatorcontrib><description>Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nontrivial and involves pressurizing a vein graft by its surgical attachment to an artery forming an arteriovenous loop (AVL). Material induction of a venous angiosome is reported, by placement of a 3D printed microporous monetite scaffold around a vein and its transplantability is further demonstrated. When the transplanted venosome is cut, it bleeds, illustrating potential reconstructive functionality. The volume of blood vessels generated by biomaterial‐induction is as great as by AVL. Direct contact of the material with the vein does not appear to be critical to luminal sprouting, and wrapping the implant in a silicone membrane significantly reduces sprouting. Pilot studies with microporous polymeric scaffolds induce far less vascular invasion. After 4 weeks, monetite scaffolds are extensively vascularized and can be transplanted to an arterial vessel. This report is significant since a lack of tools to control vascular generation is an impediment to the treatment of several conditions that give rise to tissue ischemia and tissue reconstruction. Luminal branching is unexpectedly induced simply by placing a vein within microporous calcium phosphate. Only osteoinductive biomaterials have been reported previously, and this is thought to be the first report of an angio‐inductive material. The data point to a possible bioinorganic effect, wherein the degradation of the material both releases a stimulatory ionic milieu and creates space for the developing angiosome.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201905115</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>angiogenesis ; axial vascularization ; bioceramic ; bioinorganic ; Biomedical materials ; Bleeding ; Blood vessels ; Ischemia ; Materials science ; material–host interactions ; Pressurization ; Scaffolds ; Surgical implants ; Three dimensional printing ; Tissue engineering ; Veins ; Veins &amp; arteries</subject><ispartof>Advanced functional materials, 2020-01, Vol.30 (1), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573</citedby><cites>FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573</cites><orcidid>0000-0003-3543-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Charbonnier, Baptiste</creatorcontrib><creatorcontrib>Maillard, Sophie</creatorcontrib><creatorcontrib>Sayed, Omaer</creatorcontrib><creatorcontrib>Baradaran, Aslan</creatorcontrib><creatorcontrib>Mangat, Harshdeep</creatorcontrib><creatorcontrib>Dalisson, Benjamin</creatorcontrib><creatorcontrib>Zhang, Zishuai</creatorcontrib><creatorcontrib>Zhang, Yu‐Ling</creatorcontrib><creatorcontrib>Hussain, Sabah N. A.</creatorcontrib><creatorcontrib>Mayaki, Dominique</creatorcontrib><creatorcontrib>Seitz, Hermann</creatorcontrib><creatorcontrib>Harvey, Edward J.</creatorcontrib><creatorcontrib>Gilardino, Mirko</creatorcontrib><creatorcontrib>Gbureck, Uwe</creatorcontrib><creatorcontrib>Makhoul, Nicholas</creatorcontrib><creatorcontrib>Barralet, Jake</creatorcontrib><title>Biomaterial‐Induction of a Transplantable Angiosome</title><title>Advanced functional materials</title><description>Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nontrivial and involves pressurizing a vein graft by its surgical attachment to an artery forming an arteriovenous loop (AVL). Material induction of a venous angiosome is reported, by placement of a 3D printed microporous monetite scaffold around a vein and its transplantability is further demonstrated. When the transplanted venosome is cut, it bleeds, illustrating potential reconstructive functionality. The volume of blood vessels generated by biomaterial‐induction is as great as by AVL. Direct contact of the material with the vein does not appear to be critical to luminal sprouting, and wrapping the implant in a silicone membrane significantly reduces sprouting. Pilot studies with microporous polymeric scaffolds induce far less vascular invasion. After 4 weeks, monetite scaffolds are extensively vascularized and can be transplanted to an arterial vessel. This report is significant since a lack of tools to control vascular generation is an impediment to the treatment of several conditions that give rise to tissue ischemia and tissue reconstruction. Luminal branching is unexpectedly induced simply by placing a vein within microporous calcium phosphate. Only osteoinductive biomaterials have been reported previously, and this is thought to be the first report of an angio‐inductive material. The data point to a possible bioinorganic effect, wherein the degradation of the material both releases a stimulatory ionic milieu and creates space for the developing angiosome.</description><subject>angiogenesis</subject><subject>axial vascularization</subject><subject>bioceramic</subject><subject>bioinorganic</subject><subject>Biomedical materials</subject><subject>Bleeding</subject><subject>Blood vessels</subject><subject>Ischemia</subject><subject>Materials science</subject><subject>material–host interactions</subject><subject>Pressurization</subject><subject>Scaffolds</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Veins</subject><subject>Veins &amp; arteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQQC0EEqWwMkdiTjnbsV2PpVCoVMRSJDbLsS8oVRIXOxXqxifwjXwJrYpgZLob3ruTHiGXFEYUgF1bX7UjBlSDoFQckQGVVOYc2Pj4d6cvp-QspRUAVYoXAyJu6tDaHmNtm6-Pz3nnN66vQ5eFKrPZMtourRvb9bZsMJt0r3VIocVzclLZJuHFzxyS59ndcvqQL57u59PJIndcFyIXhZbMi5IDOEZBsUI6bsG5sXRCoPclaqURWIVKa1GWXnou0aF1zlmh-JBcHe6uY3jbYOrNKmxit3tpGOcMQCvFdtToQLkYUopYmXWsWxu3hoLZpzH7NOY3zU7QB-G9bnD7D20mt7PHP_cbV69olA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Charbonnier, Baptiste</creator><creator>Maillard, Sophie</creator><creator>Sayed, Omaer</creator><creator>Baradaran, Aslan</creator><creator>Mangat, Harshdeep</creator><creator>Dalisson, Benjamin</creator><creator>Zhang, Zishuai</creator><creator>Zhang, Yu‐Ling</creator><creator>Hussain, Sabah N. A.</creator><creator>Mayaki, Dominique</creator><creator>Seitz, Hermann</creator><creator>Harvey, Edward J.</creator><creator>Gilardino, Mirko</creator><creator>Gbureck, Uwe</creator><creator>Makhoul, Nicholas</creator><creator>Barralet, Jake</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3543-6042</orcidid></search><sort><creationdate>20200101</creationdate><title>Biomaterial‐Induction of a Transplantable Angiosome</title><author>Charbonnier, Baptiste ; Maillard, Sophie ; Sayed, Omaer ; Baradaran, Aslan ; Mangat, Harshdeep ; Dalisson, Benjamin ; Zhang, Zishuai ; Zhang, Yu‐Ling ; Hussain, Sabah N. A. ; Mayaki, Dominique ; Seitz, Hermann ; Harvey, Edward J. ; Gilardino, Mirko ; Gbureck, Uwe ; Makhoul, Nicholas ; Barralet, Jake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>angiogenesis</topic><topic>axial vascularization</topic><topic>bioceramic</topic><topic>bioinorganic</topic><topic>Biomedical materials</topic><topic>Bleeding</topic><topic>Blood vessels</topic><topic>Ischemia</topic><topic>Materials science</topic><topic>material–host interactions</topic><topic>Pressurization</topic><topic>Scaffolds</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Veins</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charbonnier, Baptiste</creatorcontrib><creatorcontrib>Maillard, Sophie</creatorcontrib><creatorcontrib>Sayed, Omaer</creatorcontrib><creatorcontrib>Baradaran, Aslan</creatorcontrib><creatorcontrib>Mangat, Harshdeep</creatorcontrib><creatorcontrib>Dalisson, Benjamin</creatorcontrib><creatorcontrib>Zhang, Zishuai</creatorcontrib><creatorcontrib>Zhang, Yu‐Ling</creatorcontrib><creatorcontrib>Hussain, Sabah N. A.</creatorcontrib><creatorcontrib>Mayaki, Dominique</creatorcontrib><creatorcontrib>Seitz, Hermann</creatorcontrib><creatorcontrib>Harvey, Edward J.</creatorcontrib><creatorcontrib>Gilardino, Mirko</creatorcontrib><creatorcontrib>Gbureck, Uwe</creatorcontrib><creatorcontrib>Makhoul, Nicholas</creatorcontrib><creatorcontrib>Barralet, Jake</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charbonnier, Baptiste</au><au>Maillard, Sophie</au><au>Sayed, Omaer</au><au>Baradaran, Aslan</au><au>Mangat, Harshdeep</au><au>Dalisson, Benjamin</au><au>Zhang, Zishuai</au><au>Zhang, Yu‐Ling</au><au>Hussain, Sabah N. A.</au><au>Mayaki, Dominique</au><au>Seitz, Hermann</au><au>Harvey, Edward J.</au><au>Gilardino, Mirko</au><au>Gbureck, Uwe</au><au>Makhoul, Nicholas</au><au>Barralet, Jake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterial‐Induction of a Transplantable Angiosome</atitle><jtitle>Advanced functional materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Creating transplantable vascular networks (angiosomes) that are fed and drained by vessels large enough to be surgically reconnected is key to harnessing the potential of regenerative medicine and advancing reconstructive surgical techniques. Currently, the only way to create a new angiosome is nontrivial and involves pressurizing a vein graft by its surgical attachment to an artery forming an arteriovenous loop (AVL). Material induction of a venous angiosome is reported, by placement of a 3D printed microporous monetite scaffold around a vein and its transplantability is further demonstrated. When the transplanted venosome is cut, it bleeds, illustrating potential reconstructive functionality. The volume of blood vessels generated by biomaterial‐induction is as great as by AVL. Direct contact of the material with the vein does not appear to be critical to luminal sprouting, and wrapping the implant in a silicone membrane significantly reduces sprouting. Pilot studies with microporous polymeric scaffolds induce far less vascular invasion. After 4 weeks, monetite scaffolds are extensively vascularized and can be transplanted to an arterial vessel. This report is significant since a lack of tools to control vascular generation is an impediment to the treatment of several conditions that give rise to tissue ischemia and tissue reconstruction. Luminal branching is unexpectedly induced simply by placing a vein within microporous calcium phosphate. Only osteoinductive biomaterials have been reported previously, and this is thought to be the first report of an angio‐inductive material. The data point to a possible bioinorganic effect, wherein the degradation of the material both releases a stimulatory ionic milieu and creates space for the developing angiosome.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201905115</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3543-6042</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-01, Vol.30 (1), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2332009772
source Wiley-Blackwell Read & Publish Collection
subjects angiogenesis
axial vascularization
bioceramic
bioinorganic
Biomedical materials
Bleeding
Blood vessels
Ischemia
Materials science
material–host interactions
Pressurization
Scaffolds
Surgical implants
Three dimensional printing
Tissue engineering
Veins
Veins & arteries
title Biomaterial‐Induction of a Transplantable Angiosome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterial%E2%80%90Induction%20of%20a%20Transplantable%20Angiosome&rft.jtitle=Advanced%20functional%20materials&rft.au=Charbonnier,%20Baptiste&rft.date=2020-01-01&rft.volume=30&rft.issue=1&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201905115&rft_dat=%3Cproquest_cross%3E2332009772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3945-54962d5b300c2107246c3a0cc86c55eddbe979e02fe7995bbd6d36eceaccca573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2332009772&rft_id=info:pmid/&rfr_iscdi=true