Loading…

Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model

ABSTRACT In this study, a random forest machine‐learning method is introduced on the basis of the analysis of measured constant amplitude stress fatigue data. This method aims to predict rubber fatigue life under constant amplitude stress. Strain mean value, strain amplitude, and strain ratio are us...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2020-04, Vol.137 (14), p.n/a
Main Authors: Liu, Qiaobin, Shi, Wenku, Chen, Zhiyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4009-26dd02ec9f15b4aa930096b477421b734b2060e6533ae103635fe395e1d81c1e3
cites cdi_FETCH-LOGICAL-c4009-26dd02ec9f15b4aa930096b477421b734b2060e6533ae103635fe395e1d81c1e3
container_end_page n/a
container_issue 14
container_start_page
container_title Journal of applied polymer science
container_volume 137
creator Liu, Qiaobin
Shi, Wenku
Chen, Zhiyong
description ABSTRACT In this study, a random forest machine‐learning method is introduced on the basis of the analysis of measured constant amplitude stress fatigue data. This method aims to predict rubber fatigue life under constant amplitude stress. Strain mean value, strain amplitude, and strain ratio are used as independent variables, and the prediction model of rubber fatigue life under constant amplitude stress is established. A nonlinear cumulative fatigue damage model is proposed to calculate rubber fatigue life under the variable amplitude stress. Results show that the random forest method has high precision and generalization capability for rubber fatigue life prediction under constant amplitude stress and the nonlinear cumulative fatigue damage model could be employed to calculate the fatigue life of rubber under variable amplitude stress with enough accuracy according to the constant amplitude stress fatigue life data. This research can provide a reference for rubber fatigue life prediction. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48519.
doi_str_mv 10.1002/app.48519
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2332016016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332016016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4009-26dd02ec9f15b4aa930096b477421b734b2060e6533ae103635fe395e1d81c1e3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK4e_AYBTx66m0nadHNcFv-B4CJ6DmkzXbO0TU1bZb-90Yo3YWDgzW_eDI-QS2ALYIwvTdct0lUG6ojMgKk8SSVfHZNZnEGyUio7JWd9v2cMIGNyRtzzWBQYaGUGtxuR1q5C2gW0rhycb-nYu3ZHDQ2mtb6hlQ_YD7TB4c1bGjXa-rZ2LZpAy7EZ62jzgX9u1jRmh7TxFutzclKZuseL3z4nr7c3L5v75PHp7mGzfkzKlDGVcGkt41iqCrIiNUaJqMoizfOUQ5GLtOBMMpSZEAaBCSmyCoXKEOwKSkAxJ1eTbxf8-xi_1Xs_hjae1FwIzkDGitT1RJXB933ASnfBNSYcNDD9naSOSeqfJCO7nNhPV-Phf1Cvt9tp4wsjOHUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332016016</pqid></control><display><type>article</type><title>Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</creator><creatorcontrib>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</creatorcontrib><description>ABSTRACT In this study, a random forest machine‐learning method is introduced on the basis of the analysis of measured constant amplitude stress fatigue data. This method aims to predict rubber fatigue life under constant amplitude stress. Strain mean value, strain amplitude, and strain ratio are used as independent variables, and the prediction model of rubber fatigue life under constant amplitude stress is established. A nonlinear cumulative fatigue damage model is proposed to calculate rubber fatigue life under the variable amplitude stress. Results show that the random forest method has high precision and generalization capability for rubber fatigue life prediction under constant amplitude stress and the nonlinear cumulative fatigue damage model could be employed to calculate the fatigue life of rubber under variable amplitude stress with enough accuracy according to the constant amplitude stress fatigue life data. This research can provide a reference for rubber fatigue life prediction. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48519.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.48519</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Amplitudes ; Damage assessment ; Fatigue failure ; Fatigue life ; Independent variables ; Life prediction ; Materials science ; Mathematical models ; nonlinear cumulative fatigue damage model ; Polymers ; random forest ; Rubber ; rubber fatigue ; Strain ; variable amplitude stress</subject><ispartof>Journal of applied polymer science, 2020-04, Vol.137 (14), p.n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4009-26dd02ec9f15b4aa930096b477421b734b2060e6533ae103635fe395e1d81c1e3</citedby><cites>FETCH-LOGICAL-c4009-26dd02ec9f15b4aa930096b477421b734b2060e6533ae103635fe395e1d81c1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, Qiaobin</creatorcontrib><creatorcontrib>Shi, Wenku</creatorcontrib><creatorcontrib>Chen, Zhiyong</creatorcontrib><title>Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model</title><title>Journal of applied polymer science</title><description>ABSTRACT In this study, a random forest machine‐learning method is introduced on the basis of the analysis of measured constant amplitude stress fatigue data. This method aims to predict rubber fatigue life under constant amplitude stress. Strain mean value, strain amplitude, and strain ratio are used as independent variables, and the prediction model of rubber fatigue life under constant amplitude stress is established. A nonlinear cumulative fatigue damage model is proposed to calculate rubber fatigue life under the variable amplitude stress. Results show that the random forest method has high precision and generalization capability for rubber fatigue life prediction under constant amplitude stress and the nonlinear cumulative fatigue damage model could be employed to calculate the fatigue life of rubber under variable amplitude stress with enough accuracy according to the constant amplitude stress fatigue life data. This research can provide a reference for rubber fatigue life prediction. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48519.</description><subject>Amplitudes</subject><subject>Damage assessment</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Independent variables</subject><subject>Life prediction</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>nonlinear cumulative fatigue damage model</subject><subject>Polymers</subject><subject>random forest</subject><subject>Rubber</subject><subject>rubber fatigue</subject><subject>Strain</subject><subject>variable amplitude stress</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK4e_AYBTx66m0nadHNcFv-B4CJ6DmkzXbO0TU1bZb-90Yo3YWDgzW_eDI-QS2ALYIwvTdct0lUG6ojMgKk8SSVfHZNZnEGyUio7JWd9v2cMIGNyRtzzWBQYaGUGtxuR1q5C2gW0rhycb-nYu3ZHDQ2mtb6hlQ_YD7TB4c1bGjXa-rZ2LZpAy7EZ62jzgX9u1jRmh7TxFutzclKZuseL3z4nr7c3L5v75PHp7mGzfkzKlDGVcGkt41iqCrIiNUaJqMoizfOUQ5GLtOBMMpSZEAaBCSmyCoXKEOwKSkAxJ1eTbxf8-xi_1Xs_hjae1FwIzkDGitT1RJXB933ASnfBNSYcNDD9naSOSeqfJCO7nNhPV-Phf1Cvt9tp4wsjOHUo</recordid><startdate>20200410</startdate><enddate>20200410</enddate><creator>Liu, Qiaobin</creator><creator>Shi, Wenku</creator><creator>Chen, Zhiyong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200410</creationdate><title>Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model</title><author>Liu, Qiaobin ; Shi, Wenku ; Chen, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4009-26dd02ec9f15b4aa930096b477421b734b2060e6533ae103635fe395e1d81c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Damage assessment</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Independent variables</topic><topic>Life prediction</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>nonlinear cumulative fatigue damage model</topic><topic>Polymers</topic><topic>random forest</topic><topic>Rubber</topic><topic>rubber fatigue</topic><topic>Strain</topic><topic>variable amplitude stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiaobin</creatorcontrib><creatorcontrib>Shi, Wenku</creatorcontrib><creatorcontrib>Chen, Zhiyong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiaobin</au><au>Shi, Wenku</au><au>Chen, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model</atitle><jtitle>Journal of applied polymer science</jtitle><date>2020-04-10</date><risdate>2020</risdate><volume>137</volume><issue>14</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT In this study, a random forest machine‐learning method is introduced on the basis of the analysis of measured constant amplitude stress fatigue data. This method aims to predict rubber fatigue life under constant amplitude stress. Strain mean value, strain amplitude, and strain ratio are used as independent variables, and the prediction model of rubber fatigue life under constant amplitude stress is established. A nonlinear cumulative fatigue damage model is proposed to calculate rubber fatigue life under the variable amplitude stress. Results show that the random forest method has high precision and generalization capability for rubber fatigue life prediction under constant amplitude stress and the nonlinear cumulative fatigue damage model could be employed to calculate the fatigue life of rubber under variable amplitude stress with enough accuracy according to the constant amplitude stress fatigue life data. This research can provide a reference for rubber fatigue life prediction. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48519.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.48519</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2020-04, Vol.137 (14), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2332016016
source Wiley-Blackwell Read & Publish Collection
subjects Amplitudes
Damage assessment
Fatigue failure
Fatigue life
Independent variables
Life prediction
Materials science
Mathematical models
nonlinear cumulative fatigue damage model
Polymers
random forest
Rubber
rubber fatigue
Strain
variable amplitude stress
title Rubber fatigue life prediction using a random forest method and nonlinear cumulative fatigue damage model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rubber%20fatigue%20life%20prediction%20using%20a%20random%20forest%20method%20and%20nonlinear%20cumulative%20fatigue%20damage%20model&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Liu,%20Qiaobin&rft.date=2020-04-10&rft.volume=137&rft.issue=14&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.48519&rft_dat=%3Cproquest_cross%3E2332016016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4009-26dd02ec9f15b4aa930096b477421b734b2060e6533ae103635fe395e1d81c1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2332016016&rft_id=info:pmid/&rfr_iscdi=true