Loading…
EEG based Continuous Speech Recognition using Transformers
In this paper we investigate continuous speech recognition using electroencephalography (EEG) features using recently introduced end-to-end transformer based automatic speech recognition (ASR) model. Our results demonstrate that transformer based model demonstrate faster training compared to recurre...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we investigate continuous speech recognition using electroencephalography (EEG) features using recently introduced end-to-end transformer based automatic speech recognition (ASR) model. Our results demonstrate that transformer based model demonstrate faster training compared to recurrent neural network (RNN) based sequence-to-sequence EEG models and better performance during inference time for smaller test set vocabulary but as we increase the vocabulary size, the performance of the RNN based models were better than transformer based model on a limited English vocabulary. |
---|---|
ISSN: | 2331-8422 |