Loading…
A New SDIE Based on CFIE for Electromagnetic Scattering From IBC Objects
This article presents a new self-dual integral equation (SDIE) for electromagnetic scattering from arbitrarily impedance boundary condition (IBC) objects including partly coated objects. The proposed SDIE is constructed by using the combined field integral equation (CFIE) and IBC, shorted as C-SDIE....
Saved in:
Published in: | IEEE transactions on antennas and propagation 2020-01, Vol.68 (1), p.388-399 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents a new self-dual integral equation (SDIE) for electromagnetic scattering from arbitrarily impedance boundary condition (IBC) objects including partly coated objects. The proposed SDIE is constructed by using the combined field integral equation (CFIE) and IBC, shorted as C-SDIE. To overcome the difficulty of discontinuous surface impedance from nonuniform IBC/partly coated objects, the discontinuous Galerkin (DG) method is applied to discretize the C-SDIE. Numerical experiments confirm that the DG-C-SDIE has promising numerical performance in terms of accuracy and efficiency. Furthermore, the domain decomposition preconditioning based on DG is employed to further enhance the proposed DG-C-SDIE for large-scale, multi-scale objects. The numerical results demonstrate the capability of the proposed DG-C-SDIE. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2019.2940609 |