Loading…

Optimized Transmission for Parameter Estimation in Wireless Sensor Networks

A central problem in analog wireless sensor networks is to design the gain or phase-shifts of the sensor nodes (i.e. the relaying configuration) in order to achieve an accurate estimation of some parameter of interest at a fusion center, or more generally, at each node by employing a distributed par...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal and information processing over networks 2020, Vol.6, p.35-47
Main Authors: Khobahi, Shahin, Soltanalian, Mojtaba, Jiang, Feng, Swindlehurst, A. Lee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A central problem in analog wireless sensor networks is to design the gain or phase-shifts of the sensor nodes (i.e. the relaying configuration) in order to achieve an accurate estimation of some parameter of interest at a fusion center, or more generally, at each node by employing a distributed parameter estimation scheme. In this paper, by using an over-parametrization of the original design problem, we devise a cyclic optimization approach that can handle tuning both gains and phase-shifts of the sensor nodes, even in intricate scenarios involving sensor selection or discrete phase-shifts. Each iteration of the proposed design framework consists of a combination of the Gram-Schmidt process and power method-like iterations, and as a result, enjoys a low computational cost. Along with formulating the design problem for a fusion center, we further present a consensus-based framework for decentralized estimation of deterministic parameters in a distributed network, which results in a similar sensor gain design problem. The numerical results confirm the computational advantage of the suggested approach in comparison with the state-of-the-art methods-an advantage that becomes more pronounced when the sensor network grows large.
ISSN:2373-776X
2373-7778
DOI:10.1109/TSIPN.2019.2945631