Loading…

Theory-agnostic framework for dynamical scalarization of compact binaries

Gravitational wave observations can provide unprecedented insight into the fundamental nature of gravity and allow for novel tests of modifications to general relativity. One proposed modification suggests that gravity may undergo a phase transition in the strong-field regime; the detection of such...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2019-12, Vol.100 (12), p.1, Article 124013
Main Authors: Khalil, Mohammed, Sennett, Noah, Steinhoff, Jan, Buonanno, Alessandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-d06c172357658495d8290a3f25805f825cf3e2c6c2f74f1abe426ccb710232b53
cites cdi_FETCH-LOGICAL-c343t-d06c172357658495d8290a3f25805f825cf3e2c6c2f74f1abe426ccb710232b53
container_end_page
container_issue 12
container_start_page 1
container_title Physical review. D
container_volume 100
creator Khalil, Mohammed
Sennett, Noah
Steinhoff, Jan
Buonanno, Alessandra
description Gravitational wave observations can provide unprecedented insight into the fundamental nature of gravity and allow for novel tests of modifications to general relativity. One proposed modification suggests that gravity may undergo a phase transition in the strong-field regime; the detection of such a new phase would constitute a smoking gun for corrections to general relativity at the classical level. Several classes of modified gravity predict the existence of such a transition-known as spontaneous scalarization-associated with the spontaneous symmetry breaking of a scalar field near a compact object. Using a strong-field-agnostic effective-field-theory approach, we show that all theories that exhibit spontaneous scalarization can also manifest dynamical scalarization, a phase transition associated with symmetry breaking in a binary system. We derive an effective point-particle action that provides a simple parametrization describing both phenomena, which establishes a foundation for theory-agnostic searches for scalarization in gravitational-wave observations. This parametrization can be mapped onto any theory in which scalarization occurs; we demonstrate this point explicitly for binary black holes with a toy model of modified electrodynamics.
doi_str_mv 10.1103/PhysRevD.100.124013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334202375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334202375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-d06c172357658495d8290a3f25805f825cf3e2c6c2f74f1abe426ccb710232b53</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gZeA562TSbLZPUr9KgiK1POSTRO7tbupyVZZf72pVS8zLw8vM_AQcs5gyhjwy6fVEJ_tx_WUQSIogPEjMkKhIAPA8vg_MzglkxjXkGIOpWJsROaLlfVhyPRr52PfGOqCbu2nD2_U-UCXQ6fbxugNjWno0HzpvvEd9Y4a32616WnddInbeEZOnN5EO_ndY_Jye7OY3WcPj3fz2dVDZrjgfbaE3DCFXKpcFqKUywJL0NyhLEC6AqVx3KLJDTolHNO1FZgbUysGyLGWfEwuDne3wb_vbOyrtd-FLr2skHOBqab2LX5omeBjDNZV29C0OgwVg2qvrfrTlkAiP9r4N82mYWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334202375</pqid></control><display><type>article</type><title>Theory-agnostic framework for dynamical scalarization of compact binaries</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Khalil, Mohammed ; Sennett, Noah ; Steinhoff, Jan ; Buonanno, Alessandra</creator><creatorcontrib>Khalil, Mohammed ; Sennett, Noah ; Steinhoff, Jan ; Buonanno, Alessandra</creatorcontrib><description>Gravitational wave observations can provide unprecedented insight into the fundamental nature of gravity and allow for novel tests of modifications to general relativity. One proposed modification suggests that gravity may undergo a phase transition in the strong-field regime; the detection of such a new phase would constitute a smoking gun for corrections to general relativity at the classical level. Several classes of modified gravity predict the existence of such a transition-known as spontaneous scalarization-associated with the spontaneous symmetry breaking of a scalar field near a compact object. Using a strong-field-agnostic effective-field-theory approach, we show that all theories that exhibit spontaneous scalarization can also manifest dynamical scalarization, a phase transition associated with symmetry breaking in a binary system. We derive an effective point-particle action that provides a simple parametrization describing both phenomena, which establishes a foundation for theory-agnostic searches for scalarization in gravitational-wave observations. This parametrization can be mapped onto any theory in which scalarization occurs; we demonstrate this point explicitly for binary black holes with a toy model of modified electrodynamics.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.124013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Broken symmetry ; Electrodynamics ; Field theory ; Gravitation theory ; Gravitational waves ; Parameterization ; Phase transitions ; Relativity ; Scalars ; Theory of relativity</subject><ispartof>Physical review. D, 2019-12, Vol.100 (12), p.1, Article 124013</ispartof><rights>Copyright American Physical Society Dec 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-d06c172357658495d8290a3f25805f825cf3e2c6c2f74f1abe426ccb710232b53</citedby><cites>FETCH-LOGICAL-c343t-d06c172357658495d8290a3f25805f825cf3e2c6c2f74f1abe426ccb710232b53</cites><orcidid>0000-0002-1614-0214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khalil, Mohammed</creatorcontrib><creatorcontrib>Sennett, Noah</creatorcontrib><creatorcontrib>Steinhoff, Jan</creatorcontrib><creatorcontrib>Buonanno, Alessandra</creatorcontrib><title>Theory-agnostic framework for dynamical scalarization of compact binaries</title><title>Physical review. D</title><description>Gravitational wave observations can provide unprecedented insight into the fundamental nature of gravity and allow for novel tests of modifications to general relativity. One proposed modification suggests that gravity may undergo a phase transition in the strong-field regime; the detection of such a new phase would constitute a smoking gun for corrections to general relativity at the classical level. Several classes of modified gravity predict the existence of such a transition-known as spontaneous scalarization-associated with the spontaneous symmetry breaking of a scalar field near a compact object. Using a strong-field-agnostic effective-field-theory approach, we show that all theories that exhibit spontaneous scalarization can also manifest dynamical scalarization, a phase transition associated with symmetry breaking in a binary system. We derive an effective point-particle action that provides a simple parametrization describing both phenomena, which establishes a foundation for theory-agnostic searches for scalarization in gravitational-wave observations. This parametrization can be mapped onto any theory in which scalarization occurs; we demonstrate this point explicitly for binary black holes with a toy model of modified electrodynamics.</description><subject>Broken symmetry</subject><subject>Electrodynamics</subject><subject>Field theory</subject><subject>Gravitation theory</subject><subject>Gravitational waves</subject><subject>Parameterization</subject><subject>Phase transitions</subject><subject>Relativity</subject><subject>Scalars</subject><subject>Theory of relativity</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWGp_gZeA562TSbLZPUr9KgiK1POSTRO7tbupyVZZf72pVS8zLw8vM_AQcs5gyhjwy6fVEJ_tx_WUQSIogPEjMkKhIAPA8vg_MzglkxjXkGIOpWJsROaLlfVhyPRr52PfGOqCbu2nD2_U-UCXQ6fbxugNjWno0HzpvvEd9Y4a32616WnddInbeEZOnN5EO_ndY_Jye7OY3WcPj3fz2dVDZrjgfbaE3DCFXKpcFqKUywJL0NyhLEC6AqVx3KLJDTolHNO1FZgbUysGyLGWfEwuDne3wb_vbOyrtd-FLr2skHOBqab2LX5omeBjDNZV29C0OgwVg2qvrfrTlkAiP9r4N82mYWs</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Khalil, Mohammed</creator><creator>Sennett, Noah</creator><creator>Steinhoff, Jan</creator><creator>Buonanno, Alessandra</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1614-0214</orcidid></search><sort><creationdate>20191204</creationdate><title>Theory-agnostic framework for dynamical scalarization of compact binaries</title><author>Khalil, Mohammed ; Sennett, Noah ; Steinhoff, Jan ; Buonanno, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-d06c172357658495d8290a3f25805f825cf3e2c6c2f74f1abe426ccb710232b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Broken symmetry</topic><topic>Electrodynamics</topic><topic>Field theory</topic><topic>Gravitation theory</topic><topic>Gravitational waves</topic><topic>Parameterization</topic><topic>Phase transitions</topic><topic>Relativity</topic><topic>Scalars</topic><topic>Theory of relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalil, Mohammed</creatorcontrib><creatorcontrib>Sennett, Noah</creatorcontrib><creatorcontrib>Steinhoff, Jan</creatorcontrib><creatorcontrib>Buonanno, Alessandra</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalil, Mohammed</au><au>Sennett, Noah</au><au>Steinhoff, Jan</au><au>Buonanno, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory-agnostic framework for dynamical scalarization of compact binaries</atitle><jtitle>Physical review. D</jtitle><date>2019-12-04</date><risdate>2019</risdate><volume>100</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>124013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Gravitational wave observations can provide unprecedented insight into the fundamental nature of gravity and allow for novel tests of modifications to general relativity. One proposed modification suggests that gravity may undergo a phase transition in the strong-field regime; the detection of such a new phase would constitute a smoking gun for corrections to general relativity at the classical level. Several classes of modified gravity predict the existence of such a transition-known as spontaneous scalarization-associated with the spontaneous symmetry breaking of a scalar field near a compact object. Using a strong-field-agnostic effective-field-theory approach, we show that all theories that exhibit spontaneous scalarization can also manifest dynamical scalarization, a phase transition associated with symmetry breaking in a binary system. We derive an effective point-particle action that provides a simple parametrization describing both phenomena, which establishes a foundation for theory-agnostic searches for scalarization in gravitational-wave observations. This parametrization can be mapped onto any theory in which scalarization occurs; we demonstrate this point explicitly for binary black holes with a toy model of modified electrodynamics.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.124013</doi><orcidid>https://orcid.org/0000-0002-1614-0214</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2019-12, Vol.100 (12), p.1, Article 124013
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2334202375
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Broken symmetry
Electrodynamics
Field theory
Gravitation theory
Gravitational waves
Parameterization
Phase transitions
Relativity
Scalars
Theory of relativity
title Theory-agnostic framework for dynamical scalarization of compact binaries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory-agnostic%20framework%20for%20dynamical%20scalarization%20of%20compact%20binaries&rft.jtitle=Physical%20review.%20D&rft.au=Khalil,%20Mohammed&rft.date=2019-12-04&rft.volume=100&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=124013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.124013&rft_dat=%3Cproquest_cross%3E2334202375%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-d06c172357658495d8290a3f25805f825cf3e2c6c2f74f1abe426ccb710232b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334202375&rft_id=info:pmid/&rfr_iscdi=true