Loading…
Magnetic and magnetotransport study of Si/Ni multilayers correlated with structural and microstructural properties
•Si/Ni multilayers showed nanocrystalline grains from GIXRD and HRTEM studies.•Variation of magnetization at 20 kOe correlates with the grain size of Ni.•Anisotropic magnetoresistance is observed in the samples.•Skew scattering mechanism is responsible for AHE in the multilayers.•Maximum enhancement...
Saved in:
Published in: | Journal of magnetism and magnetic materials 2020-03, Vol.497, p.166053, Article 166053 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-5173db609290776fe89f4dbed8e988745e3358effb777eccb08bf95a21c10c463 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-5173db609290776fe89f4dbed8e988745e3358effb777eccb08bf95a21c10c463 |
container_end_page | |
container_issue | |
container_start_page | 166053 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 497 |
creator | Singh, Dushyant Roy, Ranjan Senthil Kumar, M. |
description | •Si/Ni multilayers showed nanocrystalline grains from GIXRD and HRTEM studies.•Variation of magnetization at 20 kOe correlates with the grain size of Ni.•Anisotropic magnetoresistance is observed in the samples.•Skew scattering mechanism is responsible for AHE in the multilayers.•Maximum enhancements of about 33 times in RHSA and 24 times in Rs are observed.
Influence of Si layer spacer on the magnetic and magnetotransport properties of the Si/Ni multilayers has been studied. The study is performed by investigating a series of [Si(tSi)/Ni(30Å)]20 multilayers prepared by DC magnetron sputtering process. The structural and microstructural studies suggest that the effective crystallites size increases with the decrease in tSi. The cross sectional TEM data reveal that the Si/Ni multilayers with tSi ≤ 10 Å are of discontinuous form. The magnetization (M20kOe) obtained at 20 kOe increases as tSi decreases and reaches towards the bulk value of Ni. This increase in M20kOe is due to the increase in effective size of the Ni nanocrystallites. The magnetotransport parameters such as saturated anomalous Hall resistance, anomalous Hall coefficient, Hall sensitivity and magnetoresistance ratio are found to gradually increase within 100 Å ≤ tSi ≤ 30 Å and then sharply increase till tSi = 10 Å due to surface and interface scattering. These parameters decrease when tSi further reduces down to 5 Å which is beyond the percolation threshold. The maximum enhancements of about 33 times in anomalous Hall resistance and 24 times in anomalous Hall coefficient are found at tSi = 10 Å when compared with the multilayers having tSi = 100 Å. The skew scattering is the dominant mechanism which is responsible for the anomalous Hall effect phenomena in the Si/Ni multilayers. The Si/Ni multilayers also show anisotropic magnetoresistance. |
doi_str_mv | 10.1016/j.jmmm.2019.166053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2334711160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885319318177</els_id><sourcerecordid>2334711160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-5173db609290776fe89f4dbed8e988745e3358effb777eccb08bf95a21c10c463</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54KnrubNG2SghdZ_IJVD-o5pOlUU_qxTlJl_3tb68GTp2GG9948foScM7pilIl1varbtl0llOUrJgTN-AFZMCV5nEohDsmCcprGSmX8mJx4X1NKWarEguCDeesgOBuZrozan6UPaDq_6zFEPgzlPuqr6NmtH13UDk1wjdkD-sj2iNCYAGX05cL7KMXBhgFNM0c5i_2f2w77HWBw4E_JUWUaD2e_c0leb65fNnfx9un2fnO1jS1PVIgzJnlZCJonOZVSVKDyKi0LKBXkSsk0A84zBVVVSCnB2oKqosozkzDLqE0FX5KLOXd8_TGAD7ruB-zGlzrhPJWMMUFHVTKrproeodI7dK3BvWZUT2x1rSe2emKrZ7aj6XI2wdj_0wFqbx10FkqHYIMue_ef_RttpYWZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334711160</pqid></control><display><type>article</type><title>Magnetic and magnetotransport study of Si/Ni multilayers correlated with structural and microstructural properties</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Singh, Dushyant ; Roy, Ranjan ; Senthil Kumar, M.</creator><creatorcontrib>Singh, Dushyant ; Roy, Ranjan ; Senthil Kumar, M.</creatorcontrib><description>•Si/Ni multilayers showed nanocrystalline grains from GIXRD and HRTEM studies.•Variation of magnetization at 20 kOe correlates with the grain size of Ni.•Anisotropic magnetoresistance is observed in the samples.•Skew scattering mechanism is responsible for AHE in the multilayers.•Maximum enhancements of about 33 times in RHSA and 24 times in Rs are observed.
Influence of Si layer spacer on the magnetic and magnetotransport properties of the Si/Ni multilayers has been studied. The study is performed by investigating a series of [Si(tSi)/Ni(30Å)]20 multilayers prepared by DC magnetron sputtering process. The structural and microstructural studies suggest that the effective crystallites size increases with the decrease in tSi. The cross sectional TEM data reveal that the Si/Ni multilayers with tSi ≤ 10 Å are of discontinuous form. The magnetization (M20kOe) obtained at 20 kOe increases as tSi decreases and reaches towards the bulk value of Ni. This increase in M20kOe is due to the increase in effective size of the Ni nanocrystallites. The magnetotransport parameters such as saturated anomalous Hall resistance, anomalous Hall coefficient, Hall sensitivity and magnetoresistance ratio are found to gradually increase within 100 Å ≤ tSi ≤ 30 Å and then sharply increase till tSi = 10 Å due to surface and interface scattering. These parameters decrease when tSi further reduces down to 5 Å which is beyond the percolation threshold. The maximum enhancements of about 33 times in anomalous Hall resistance and 24 times in anomalous Hall coefficient are found at tSi = 10 Å when compared with the multilayers having tSi = 100 Å. The skew scattering is the dominant mechanism which is responsible for the anomalous Hall effect phenomena in the Si/Ni multilayers. The Si/Ni multilayers also show anisotropic magnetoresistance.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2019.166053</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anomalous Hall Effect ; Correlation analysis ; Crystallites ; GIXRD ; Hall effect ; HRTEM ; Magnetic multilayers ; Magnetic properties ; Magnetization ; Magnetoresistance ; Magnetoresistivity ; Magnetron sputtering ; Multilayers ; Parameter sensitivity ; Percolation ; Scattering ; Silicon ; Transport properties</subject><ispartof>Journal of magnetism and magnetic materials, 2020-03, Vol.497, p.166053, Article 166053</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-5173db609290776fe89f4dbed8e988745e3358effb777eccb08bf95a21c10c463</citedby><cites>FETCH-LOGICAL-c328t-5173db609290776fe89f4dbed8e988745e3358effb777eccb08bf95a21c10c463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Dushyant</creatorcontrib><creatorcontrib>Roy, Ranjan</creatorcontrib><creatorcontrib>Senthil Kumar, M.</creatorcontrib><title>Magnetic and magnetotransport study of Si/Ni multilayers correlated with structural and microstructural properties</title><title>Journal of magnetism and magnetic materials</title><description>•Si/Ni multilayers showed nanocrystalline grains from GIXRD and HRTEM studies.•Variation of magnetization at 20 kOe correlates with the grain size of Ni.•Anisotropic magnetoresistance is observed in the samples.•Skew scattering mechanism is responsible for AHE in the multilayers.•Maximum enhancements of about 33 times in RHSA and 24 times in Rs are observed.
Influence of Si layer spacer on the magnetic and magnetotransport properties of the Si/Ni multilayers has been studied. The study is performed by investigating a series of [Si(tSi)/Ni(30Å)]20 multilayers prepared by DC magnetron sputtering process. The structural and microstructural studies suggest that the effective crystallites size increases with the decrease in tSi. The cross sectional TEM data reveal that the Si/Ni multilayers with tSi ≤ 10 Å are of discontinuous form. The magnetization (M20kOe) obtained at 20 kOe increases as tSi decreases and reaches towards the bulk value of Ni. This increase in M20kOe is due to the increase in effective size of the Ni nanocrystallites. The magnetotransport parameters such as saturated anomalous Hall resistance, anomalous Hall coefficient, Hall sensitivity and magnetoresistance ratio are found to gradually increase within 100 Å ≤ tSi ≤ 30 Å and then sharply increase till tSi = 10 Å due to surface and interface scattering. These parameters decrease when tSi further reduces down to 5 Å which is beyond the percolation threshold. The maximum enhancements of about 33 times in anomalous Hall resistance and 24 times in anomalous Hall coefficient are found at tSi = 10 Å when compared with the multilayers having tSi = 100 Å. The skew scattering is the dominant mechanism which is responsible for the anomalous Hall effect phenomena in the Si/Ni multilayers. The Si/Ni multilayers also show anisotropic magnetoresistance.</description><subject>Anomalous Hall Effect</subject><subject>Correlation analysis</subject><subject>Crystallites</subject><subject>GIXRD</subject><subject>Hall effect</subject><subject>HRTEM</subject><subject>Magnetic multilayers</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Magnetron sputtering</subject><subject>Multilayers</subject><subject>Parameter sensitivity</subject><subject>Percolation</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Transport properties</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A54KnrubNG2SghdZ_IJVD-o5pOlUU_qxTlJl_3tb68GTp2GG9948foScM7pilIl1varbtl0llOUrJgTN-AFZMCV5nEohDsmCcprGSmX8mJx4X1NKWarEguCDeesgOBuZrozan6UPaDq_6zFEPgzlPuqr6NmtH13UDk1wjdkD-sj2iNCYAGX05cL7KMXBhgFNM0c5i_2f2w77HWBw4E_JUWUaD2e_c0leb65fNnfx9un2fnO1jS1PVIgzJnlZCJonOZVSVKDyKi0LKBXkSsk0A84zBVVVSCnB2oKqosozkzDLqE0FX5KLOXd8_TGAD7ruB-zGlzrhPJWMMUFHVTKrproeodI7dK3BvWZUT2x1rSe2emKrZ7aj6XI2wdj_0wFqbx10FkqHYIMue_ef_RttpYWZ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Singh, Dushyant</creator><creator>Roy, Ranjan</creator><creator>Senthil Kumar, M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200301</creationdate><title>Magnetic and magnetotransport study of Si/Ni multilayers correlated with structural and microstructural properties</title><author>Singh, Dushyant ; Roy, Ranjan ; Senthil Kumar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-5173db609290776fe89f4dbed8e988745e3358effb777eccb08bf95a21c10c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalous Hall Effect</topic><topic>Correlation analysis</topic><topic>Crystallites</topic><topic>GIXRD</topic><topic>Hall effect</topic><topic>HRTEM</topic><topic>Magnetic multilayers</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Magnetron sputtering</topic><topic>Multilayers</topic><topic>Parameter sensitivity</topic><topic>Percolation</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Dushyant</creatorcontrib><creatorcontrib>Roy, Ranjan</creatorcontrib><creatorcontrib>Senthil Kumar, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Dushyant</au><au>Roy, Ranjan</au><au>Senthil Kumar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic and magnetotransport study of Si/Ni multilayers correlated with structural and microstructural properties</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>497</volume><spage>166053</spage><pages>166053-</pages><artnum>166053</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Si/Ni multilayers showed nanocrystalline grains from GIXRD and HRTEM studies.•Variation of magnetization at 20 kOe correlates with the grain size of Ni.•Anisotropic magnetoresistance is observed in the samples.•Skew scattering mechanism is responsible for AHE in the multilayers.•Maximum enhancements of about 33 times in RHSA and 24 times in Rs are observed.
Influence of Si layer spacer on the magnetic and magnetotransport properties of the Si/Ni multilayers has been studied. The study is performed by investigating a series of [Si(tSi)/Ni(30Å)]20 multilayers prepared by DC magnetron sputtering process. The structural and microstructural studies suggest that the effective crystallites size increases with the decrease in tSi. The cross sectional TEM data reveal that the Si/Ni multilayers with tSi ≤ 10 Å are of discontinuous form. The magnetization (M20kOe) obtained at 20 kOe increases as tSi decreases and reaches towards the bulk value of Ni. This increase in M20kOe is due to the increase in effective size of the Ni nanocrystallites. The magnetotransport parameters such as saturated anomalous Hall resistance, anomalous Hall coefficient, Hall sensitivity and magnetoresistance ratio are found to gradually increase within 100 Å ≤ tSi ≤ 30 Å and then sharply increase till tSi = 10 Å due to surface and interface scattering. These parameters decrease when tSi further reduces down to 5 Å which is beyond the percolation threshold. The maximum enhancements of about 33 times in anomalous Hall resistance and 24 times in anomalous Hall coefficient are found at tSi = 10 Å when compared with the multilayers having tSi = 100 Å. The skew scattering is the dominant mechanism which is responsible for the anomalous Hall effect phenomena in the Si/Ni multilayers. The Si/Ni multilayers also show anisotropic magnetoresistance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2019.166053</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2020-03, Vol.497, p.166053, Article 166053 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2334711160 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Anomalous Hall Effect Correlation analysis Crystallites GIXRD Hall effect HRTEM Magnetic multilayers Magnetic properties Magnetization Magnetoresistance Magnetoresistivity Magnetron sputtering Multilayers Parameter sensitivity Percolation Scattering Silicon Transport properties |
title | Magnetic and magnetotransport study of Si/Ni multilayers correlated with structural and microstructural properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20and%20magnetotransport%20study%20of%20Si/Ni%20multilayers%20correlated%20with%20structural%20and%20microstructural%20properties&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Singh,%20Dushyant&rft.date=2020-03-01&rft.volume=497&rft.spage=166053&rft.pages=166053-&rft.artnum=166053&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2019.166053&rft_dat=%3Cproquest_cross%3E2334711160%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-5173db609290776fe89f4dbed8e988745e3358effb777eccb08bf95a21c10c463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334711160&rft_id=info:pmid/&rfr_iscdi=true |