Loading…
Biocatalytically Initiated Precipitation Atom Transfer Radical Polymerization (ATRP) as a Quantitative Method for Hemoglobin Detection in Biological Fluids
The hemoglobin content of blood is an important health indicator, and the presence of microscopic amounts of hemoglobin in places where it normally does not occur, e.g. in blood plasma or in urine, is a sign of diseases such as hemolytic anemia or urinary tract infections. Thus, methods to detect an...
Saved in:
Published in: | Analytical chemistry (Washington) 2020-01, Vol.92 (1), p.1162-1170 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a422t-7c597f5ea7921cf10260306b163cbe078b46798aaed04bb6c204b9705ab850c73 |
---|---|
cites | cdi_FETCH-LOGICAL-a422t-7c597f5ea7921cf10260306b163cbe078b46798aaed04bb6c204b9705ab850c73 |
container_end_page | 1170 |
container_issue | 1 |
container_start_page | 1162 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Pollard, Jonas Rifaie-Graham, Omar Raccio, Samuel Davey, Annabelle Balog, Sandor Bruns, Nico |
description | The hemoglobin content of blood is an important health indicator, and the presence of microscopic amounts of hemoglobin in places where it normally does not occur, e.g. in blood plasma or in urine, is a sign of diseases such as hemolytic anemia or urinary tract infections. Thus, methods to detect and quantify hemoglobin are important for clinical laboratories, blood banks, and for point-of-care diagnostics. The precipitation polymerization of N-isopropylacrylamide by hemoglobin-catalyzed atom transfer radical polymerization (ATRP) is used as an assay for hemoglobin quantification relying on the formation of turbidity as a simple optical read-out. Dose–response curves for pure hemoglobin and for hemoglobin in blood plasma, in urine, in erythrocytes, and in full blood are obtained. Turbidity formation increases with the concentration of hemoglobin. Concentrations of hemoglobin as low as 6.45 × 10–3 mg mL–1 in solution, 4.88 × 10–1 mg mL–1 in plasma, and 1.65 × 10–1 mg mL–1 in urine could be detected, which is below the clinically relevant concentrations in the respective body fluids. Total hemoglobin in full blood is also accurately determined. The reaction can be regarded as a polymerization-based signal amplification for the sensing of hemoglobin, as the analyte catalyzes the formation of radicals which add many monomer units into detectable polymer chains. While most established hemoglobin tests involve the use of highly toxic reagents such as potassium cyanide, the polymerization-based test uses simple and stable organic reagents. Thus, it is an environmentally friendlier alternative to established chemical assays for hemoglobin. |
doi_str_mv | 10.1021/acs.analchem.9b04290 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2335663932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335663932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-7c597f5ea7921cf10260306b163cbe078b46798aaed04bb6c204b9705ab850c73</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EokPpGyBkiQ0sMlw7iZMsh9LSSkUM1XQdXTtO68qJp7aDNH2Vvmw9P-2SlWXpnM--9yPkE4M5A86-owpzHNGqOz3MGwkFb-ANmbGSQybqmr8lMwDIM14BHJEPIdwDMAZMvCdHOasa4FDMyNMP4xRGtJtoFFq7oZejiQaj7ujSa2XWJmI0bqSL6Aa68jiGXnt6jd2Wp0tnN4P25nEPfV2srpffKAaK9O-EY9zZ_zT9reOd62jvPL3Qg7u1TpqR_tRRq52YLukn1t3uUs_tZLrwkbzr0QZ9cjiPyc352er0Irv68-vydHGVYcF5zCpVNlVfaqwazlSfliMgByGZyJXUUNWyEFVTI-oOCimFSoPLpoISZV2CqvJj8mWfu_buYdIhtvdu8mm1oeV5XgqRNzlPVLGnlHcheN23a28G9JuWQbttpE2NtC-NtIdGkvb5ED7JQXev0ksFCYA9sNVfH_5v5jNeDpyd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335663932</pqid></control><display><type>article</type><title>Biocatalytically Initiated Precipitation Atom Transfer Radical Polymerization (ATRP) as a Quantitative Method for Hemoglobin Detection in Biological Fluids</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Pollard, Jonas ; Rifaie-Graham, Omar ; Raccio, Samuel ; Davey, Annabelle ; Balog, Sandor ; Bruns, Nico</creator><creatorcontrib>Pollard, Jonas ; Rifaie-Graham, Omar ; Raccio, Samuel ; Davey, Annabelle ; Balog, Sandor ; Bruns, Nico</creatorcontrib><description>The hemoglobin content of blood is an important health indicator, and the presence of microscopic amounts of hemoglobin in places where it normally does not occur, e.g. in blood plasma or in urine, is a sign of diseases such as hemolytic anemia or urinary tract infections. Thus, methods to detect and quantify hemoglobin are important for clinical laboratories, blood banks, and for point-of-care diagnostics. The precipitation polymerization of N-isopropylacrylamide by hemoglobin-catalyzed atom transfer radical polymerization (ATRP) is used as an assay for hemoglobin quantification relying on the formation of turbidity as a simple optical read-out. Dose–response curves for pure hemoglobin and for hemoglobin in blood plasma, in urine, in erythrocytes, and in full blood are obtained. Turbidity formation increases with the concentration of hemoglobin. Concentrations of hemoglobin as low as 6.45 × 10–3 mg mL–1 in solution, 4.88 × 10–1 mg mL–1 in plasma, and 1.65 × 10–1 mg mL–1 in urine could be detected, which is below the clinically relevant concentrations in the respective body fluids. Total hemoglobin in full blood is also accurately determined. The reaction can be regarded as a polymerization-based signal amplification for the sensing of hemoglobin, as the analyte catalyzes the formation of radicals which add many monomer units into detectable polymer chains. While most established hemoglobin tests involve the use of highly toxic reagents such as potassium cyanide, the polymerization-based test uses simple and stable organic reagents. Thus, it is an environmentally friendlier alternative to established chemical assays for hemoglobin.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b04290</identifier><identifier>PMID: 31790204</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylamides - chemistry ; Acrylamides - metabolism ; Anemia ; Biocatalysis ; Blood ; Blood plasma ; Body fluids ; Body Fluids - chemistry ; Body Fluids - metabolism ; Chemical precipitation ; Chemistry ; Erythrocytes ; Hemoglobin ; Hemoglobins - analysis ; Hemoglobins - metabolism ; Hemolytic anemia ; Humans ; Isopropylacrylamide ; Organic chemistry ; Polymerization ; Polymers ; Potassium ; Potassium cyanide ; Reagents ; Turbidity ; Urinary tract ; Urine</subject><ispartof>Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.1162-1170</ispartof><rights>Copyright American Chemical Society Jan 7, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a422t-7c597f5ea7921cf10260306b163cbe078b46798aaed04bb6c204b9705ab850c73</citedby><cites>FETCH-LOGICAL-a422t-7c597f5ea7921cf10260306b163cbe078b46798aaed04bb6c204b9705ab850c73</cites><orcidid>0000-0002-4847-9845 ; 0000-0001-6199-9995 ; 0000-0003-1403-0537 ; 0000-0002-9331-576X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31790204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pollard, Jonas</creatorcontrib><creatorcontrib>Rifaie-Graham, Omar</creatorcontrib><creatorcontrib>Raccio, Samuel</creatorcontrib><creatorcontrib>Davey, Annabelle</creatorcontrib><creatorcontrib>Balog, Sandor</creatorcontrib><creatorcontrib>Bruns, Nico</creatorcontrib><title>Biocatalytically Initiated Precipitation Atom Transfer Radical Polymerization (ATRP) as a Quantitative Method for Hemoglobin Detection in Biological Fluids</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The hemoglobin content of blood is an important health indicator, and the presence of microscopic amounts of hemoglobin in places where it normally does not occur, e.g. in blood plasma or in urine, is a sign of diseases such as hemolytic anemia or urinary tract infections. Thus, methods to detect and quantify hemoglobin are important for clinical laboratories, blood banks, and for point-of-care diagnostics. The precipitation polymerization of N-isopropylacrylamide by hemoglobin-catalyzed atom transfer radical polymerization (ATRP) is used as an assay for hemoglobin quantification relying on the formation of turbidity as a simple optical read-out. Dose–response curves for pure hemoglobin and for hemoglobin in blood plasma, in urine, in erythrocytes, and in full blood are obtained. Turbidity formation increases with the concentration of hemoglobin. Concentrations of hemoglobin as low as 6.45 × 10–3 mg mL–1 in solution, 4.88 × 10–1 mg mL–1 in plasma, and 1.65 × 10–1 mg mL–1 in urine could be detected, which is below the clinically relevant concentrations in the respective body fluids. Total hemoglobin in full blood is also accurately determined. The reaction can be regarded as a polymerization-based signal amplification for the sensing of hemoglobin, as the analyte catalyzes the formation of radicals which add many monomer units into detectable polymer chains. While most established hemoglobin tests involve the use of highly toxic reagents such as potassium cyanide, the polymerization-based test uses simple and stable organic reagents. Thus, it is an environmentally friendlier alternative to established chemical assays for hemoglobin.</description><subject>Acrylamides - chemistry</subject><subject>Acrylamides - metabolism</subject><subject>Anemia</subject><subject>Biocatalysis</subject><subject>Blood</subject><subject>Blood plasma</subject><subject>Body fluids</subject><subject>Body Fluids - chemistry</subject><subject>Body Fluids - metabolism</subject><subject>Chemical precipitation</subject><subject>Chemistry</subject><subject>Erythrocytes</subject><subject>Hemoglobin</subject><subject>Hemoglobins - analysis</subject><subject>Hemoglobins - metabolism</subject><subject>Hemolytic anemia</subject><subject>Humans</subject><subject>Isopropylacrylamide</subject><subject>Organic chemistry</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Potassium</subject><subject>Potassium cyanide</subject><subject>Reagents</subject><subject>Turbidity</subject><subject>Urinary tract</subject><subject>Urine</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EokPpGyBkiQ0sMlw7iZMsh9LSSkUM1XQdXTtO68qJp7aDNH2Vvmw9P-2SlWXpnM--9yPkE4M5A86-owpzHNGqOz3MGwkFb-ANmbGSQybqmr8lMwDIM14BHJEPIdwDMAZMvCdHOasa4FDMyNMP4xRGtJtoFFq7oZejiQaj7ujSa2XWJmI0bqSL6Aa68jiGXnt6jd2Wp0tnN4P25nEPfV2srpffKAaK9O-EY9zZ_zT9reOd62jvPL3Qg7u1TpqR_tRRq52YLukn1t3uUs_tZLrwkbzr0QZ9cjiPyc352er0Irv68-vydHGVYcF5zCpVNlVfaqwazlSfliMgByGZyJXUUNWyEFVTI-oOCimFSoPLpoISZV2CqvJj8mWfu_buYdIhtvdu8mm1oeV5XgqRNzlPVLGnlHcheN23a28G9JuWQbttpE2NtC-NtIdGkvb5ED7JQXev0ksFCYA9sNVfH_5v5jNeDpyd</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Pollard, Jonas</creator><creator>Rifaie-Graham, Omar</creator><creator>Raccio, Samuel</creator><creator>Davey, Annabelle</creator><creator>Balog, Sandor</creator><creator>Bruns, Nico</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4847-9845</orcidid><orcidid>https://orcid.org/0000-0001-6199-9995</orcidid><orcidid>https://orcid.org/0000-0003-1403-0537</orcidid><orcidid>https://orcid.org/0000-0002-9331-576X</orcidid></search><sort><creationdate>20200107</creationdate><title>Biocatalytically Initiated Precipitation Atom Transfer Radical Polymerization (ATRP) as a Quantitative Method for Hemoglobin Detection in Biological Fluids</title><author>Pollard, Jonas ; Rifaie-Graham, Omar ; Raccio, Samuel ; Davey, Annabelle ; Balog, Sandor ; Bruns, Nico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-7c597f5ea7921cf10260306b163cbe078b46798aaed04bb6c204b9705ab850c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acrylamides - chemistry</topic><topic>Acrylamides - metabolism</topic><topic>Anemia</topic><topic>Biocatalysis</topic><topic>Blood</topic><topic>Blood plasma</topic><topic>Body fluids</topic><topic>Body Fluids - chemistry</topic><topic>Body Fluids - metabolism</topic><topic>Chemical precipitation</topic><topic>Chemistry</topic><topic>Erythrocytes</topic><topic>Hemoglobin</topic><topic>Hemoglobins - analysis</topic><topic>Hemoglobins - metabolism</topic><topic>Hemolytic anemia</topic><topic>Humans</topic><topic>Isopropylacrylamide</topic><topic>Organic chemistry</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Potassium</topic><topic>Potassium cyanide</topic><topic>Reagents</topic><topic>Turbidity</topic><topic>Urinary tract</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollard, Jonas</creatorcontrib><creatorcontrib>Rifaie-Graham, Omar</creatorcontrib><creatorcontrib>Raccio, Samuel</creatorcontrib><creatorcontrib>Davey, Annabelle</creatorcontrib><creatorcontrib>Balog, Sandor</creatorcontrib><creatorcontrib>Bruns, Nico</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollard, Jonas</au><au>Rifaie-Graham, Omar</au><au>Raccio, Samuel</au><au>Davey, Annabelle</au><au>Balog, Sandor</au><au>Bruns, Nico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocatalytically Initiated Precipitation Atom Transfer Radical Polymerization (ATRP) as a Quantitative Method for Hemoglobin Detection in Biological Fluids</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>92</volume><issue>1</issue><spage>1162</spage><epage>1170</epage><pages>1162-1170</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The hemoglobin content of blood is an important health indicator, and the presence of microscopic amounts of hemoglobin in places where it normally does not occur, e.g. in blood plasma or in urine, is a sign of diseases such as hemolytic anemia or urinary tract infections. Thus, methods to detect and quantify hemoglobin are important for clinical laboratories, blood banks, and for point-of-care diagnostics. The precipitation polymerization of N-isopropylacrylamide by hemoglobin-catalyzed atom transfer radical polymerization (ATRP) is used as an assay for hemoglobin quantification relying on the formation of turbidity as a simple optical read-out. Dose–response curves for pure hemoglobin and for hemoglobin in blood plasma, in urine, in erythrocytes, and in full blood are obtained. Turbidity formation increases with the concentration of hemoglobin. Concentrations of hemoglobin as low as 6.45 × 10–3 mg mL–1 in solution, 4.88 × 10–1 mg mL–1 in plasma, and 1.65 × 10–1 mg mL–1 in urine could be detected, which is below the clinically relevant concentrations in the respective body fluids. Total hemoglobin in full blood is also accurately determined. The reaction can be regarded as a polymerization-based signal amplification for the sensing of hemoglobin, as the analyte catalyzes the formation of radicals which add many monomer units into detectable polymer chains. While most established hemoglobin tests involve the use of highly toxic reagents such as potassium cyanide, the polymerization-based test uses simple and stable organic reagents. Thus, it is an environmentally friendlier alternative to established chemical assays for hemoglobin.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31790204</pmid><doi>10.1021/acs.analchem.9b04290</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4847-9845</orcidid><orcidid>https://orcid.org/0000-0001-6199-9995</orcidid><orcidid>https://orcid.org/0000-0003-1403-0537</orcidid><orcidid>https://orcid.org/0000-0002-9331-576X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.1162-1170 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_journals_2335663932 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acrylamides - chemistry Acrylamides - metabolism Anemia Biocatalysis Blood Blood plasma Body fluids Body Fluids - chemistry Body Fluids - metabolism Chemical precipitation Chemistry Erythrocytes Hemoglobin Hemoglobins - analysis Hemoglobins - metabolism Hemolytic anemia Humans Isopropylacrylamide Organic chemistry Polymerization Polymers Potassium Potassium cyanide Reagents Turbidity Urinary tract Urine |
title | Biocatalytically Initiated Precipitation Atom Transfer Radical Polymerization (ATRP) as a Quantitative Method for Hemoglobin Detection in Biological Fluids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocatalytically%20Initiated%20Precipitation%20Atom%20Transfer%20Radical%20Polymerization%20(ATRP)%20as%20a%20Quantitative%20Method%20for%20Hemoglobin%20Detection%20in%20Biological%20Fluids&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Pollard,%20Jonas&rft.date=2020-01-07&rft.volume=92&rft.issue=1&rft.spage=1162&rft.epage=1170&rft.pages=1162-1170&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b04290&rft_dat=%3Cproquest_cross%3E2335663932%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a422t-7c597f5ea7921cf10260306b163cbe078b46798aaed04bb6c204b9705ab850c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2335663932&rft_id=info:pmid/31790204&rfr_iscdi=true |