Loading…

Effects of plant diversity on soil carbon in diverse ecosystems: a global meta‐analysis

ABSTRACT Soil organic carbon (SOC) is a valuable resource for mediating global climate change and securing food production. Despite an alarming rate of global plant diversity loss, uncertainties concerning the effects of plant diversity on SOC remain, because plant diversity not only stimulates litt...

Full description

Saved in:
Bibliographic Details
Published in:Biological reviews of the Cambridge Philosophical Society 2020-02, Vol.95 (1), p.167-183
Main Authors: Chen, Xinli, Chen, Han Y. H., Chen, Chen, Ma, Zilong, Searle, Eric B., Yu, Zaipeng, Huang, Zhiqun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Soil organic carbon (SOC) is a valuable resource for mediating global climate change and securing food production. Despite an alarming rate of global plant diversity loss, uncertainties concerning the effects of plant diversity on SOC remain, because plant diversity not only stimulates litter inputs via increased productivity, thus enhancing SOC, but also stimulates microbial respiration, thus reducing SOC. By analysing 1001 paired observations of plant mixtures and corresponding monocultures from 121 publications, we show that both SOC content and stock are on average 5 and 8% higher in species mixtures than in monocultures. These positive mixture effects increase over time and are more pronounced in deeper soils. Microbial biomass carbon, an indicator of SOC release and formation, also increases, but the proportion of microbial biomass carbon in SOC is lower in mixtures. Moreover, these species‐mixture effects are consistent across forest, grassland, and cropland systems and are independent of background climates. Our results indicate that converting 50% of global forests from mixtures to monocultures would release an average of 2.70 Pg C from soil annually over a period of 20 years: about 30% of global annual fossil‐fuel emissions. Our study highlights the importance of plant diversity preservation for the maintenance of soil carbon sequestration in discussions of global climate change policy.
ISSN:1464-7931
1469-185X
DOI:10.1111/brv.12554