Loading…

Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles

Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-05
Main Authors: Kulathunga, Geesara, Fedorenko, Roman, Kopylov, Sergey, Klimchik, Alexandr
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kulathunga, Geesara
Fedorenko, Roman
Kopylov, Sergey
Klimchik, Alexandr
description Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-components of the system including point cloud processor, trajectory estimator and planner. Afterwards, the multi-rotary aerial vehicle starts moving on the given trajectory. When it detects obstacles, it replans the trajectory from the current pose to pre-defined distance incorporating the desired trajectory. Point cloud processor is employed to identify the closest obstacles around the vehicle. For replanning, Rapidly-exploring Random Trees (RRT*) is used with two modifications which allow planning the trajectory in milliseconds scales. Once we replanned the desired path, velocity components(x,y and z) and yaw rate are calculated. Those values are sent to the controller at a constant frequency to maneuver the vehicle autonomously. Finally, we have evaluated each of the components separately and tested the complete system in the simulated and real environments.
doi_str_mv 10.48550/arxiv.2001.03605
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2336777620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336777620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-2b172320d724d19eba81549caff265291745b85fe64eb1c37bc9d7f6ff2af4703</originalsourceid><addsrcrecordid>eNotj11LwzAYRoMgOOZ-gHcBr1uTN1_t5ZifUJmMIt6NNHszW7p0Jp24f29Br87FgfPwEHLDWS4LpdidjT_tdw6M8ZwJzdQFmYEQPCskwBVZpNQxxkAbUErMyMcGbZ_V7QFpNYQ93diwR1pH26Ebh3imGzz2NoR2cn6I9HX5nmgb6PiJ9C1iwuCQDp7en4M9tI6umzRa12O6Jpfe9gkX_5yT-vGhXj1n1frpZbWsMquAZdBwAwLYzoDc8RIbW3AlS2e9B62g5EaqplAetcSGO2EaV-6M15O2Xhom5uT2L3uMw9cJ07jthlMM0-J2eq2NMRqY-AUBk1I-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336777620</pqid></control><display><type>article</type><title>Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kulathunga, Geesara ; Fedorenko, Roman ; Kopylov, Sergey ; Klimchik, Alexandr</creator><creatorcontrib>Kulathunga, Geesara ; Fedorenko, Roman ; Kopylov, Sergey ; Klimchik, Alexandr</creatorcontrib><description>Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-components of the system including point cloud processor, trajectory estimator and planner. Afterwards, the multi-rotary aerial vehicle starts moving on the given trajectory. When it detects obstacles, it replans the trajectory from the current pose to pre-defined distance incorporating the desired trajectory. Point cloud processor is employed to identify the closest obstacles around the vehicle. For replanning, Rapidly-exploring Random Trees (RRT*) is used with two modifications which allow planning the trajectory in milliseconds scales. Once we replanned the desired path, velocity components(x,y and z) and yaw rate are calculated. Those values are sent to the controller at a constant frequency to maneuver the vehicle autonomously. Finally, we have evaluated each of the components separately and tested the complete system in the simulated and real environments.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2001.03605</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Barriers ; Microprocessors ; Real time ; Trajectory analysis ; Trajectory planning ; Unmanned aerial vehicles ; Yaw</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2336777620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Kulathunga, Geesara</creatorcontrib><creatorcontrib>Fedorenko, Roman</creatorcontrib><creatorcontrib>Kopylov, Sergey</creatorcontrib><creatorcontrib>Klimchik, Alexandr</creatorcontrib><title>Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles</title><title>arXiv.org</title><description>Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-components of the system including point cloud processor, trajectory estimator and planner. Afterwards, the multi-rotary aerial vehicle starts moving on the given trajectory. When it detects obstacles, it replans the trajectory from the current pose to pre-defined distance incorporating the desired trajectory. Point cloud processor is employed to identify the closest obstacles around the vehicle. For replanning, Rapidly-exploring Random Trees (RRT*) is used with two modifications which allow planning the trajectory in milliseconds scales. Once we replanned the desired path, velocity components(x,y and z) and yaw rate are calculated. Those values are sent to the controller at a constant frequency to maneuver the vehicle autonomously. Finally, we have evaluated each of the components separately and tested the complete system in the simulated and real environments.</description><subject>Barriers</subject><subject>Microprocessors</subject><subject>Real time</subject><subject>Trajectory analysis</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicles</subject><subject>Yaw</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj11LwzAYRoMgOOZ-gHcBr1uTN1_t5ZifUJmMIt6NNHszW7p0Jp24f29Br87FgfPwEHLDWS4LpdidjT_tdw6M8ZwJzdQFmYEQPCskwBVZpNQxxkAbUErMyMcGbZ_V7QFpNYQ93diwR1pH26Ebh3imGzz2NoR2cn6I9HX5nmgb6PiJ9C1iwuCQDp7en4M9tI6umzRa12O6Jpfe9gkX_5yT-vGhXj1n1frpZbWsMquAZdBwAwLYzoDc8RIbW3AlS2e9B62g5EaqplAetcSGO2EaV-6M15O2Xhom5uT2L3uMw9cJ07jthlMM0-J2eq2NMRqY-AUBk1I-</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Kulathunga, Geesara</creator><creator>Fedorenko, Roman</creator><creator>Kopylov, Sergey</creator><creator>Klimchik, Alexandr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200504</creationdate><title>Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles</title><author>Kulathunga, Geesara ; Fedorenko, Roman ; Kopylov, Sergey ; Klimchik, Alexandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-2b172320d724d19eba81549caff265291745b85fe64eb1c37bc9d7f6ff2af4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barriers</topic><topic>Microprocessors</topic><topic>Real time</topic><topic>Trajectory analysis</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicles</topic><topic>Yaw</topic><toplevel>online_resources</toplevel><creatorcontrib>Kulathunga, Geesara</creatorcontrib><creatorcontrib>Fedorenko, Roman</creatorcontrib><creatorcontrib>Kopylov, Sergey</creatorcontrib><creatorcontrib>Klimchik, Alexandr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulathunga, Geesara</au><au>Fedorenko, Roman</au><au>Kopylov, Sergey</au><au>Klimchik, Alexandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles</atitle><jtitle>arXiv.org</jtitle><date>2020-05-04</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-components of the system including point cloud processor, trajectory estimator and planner. Afterwards, the multi-rotary aerial vehicle starts moving on the given trajectory. When it detects obstacles, it replans the trajectory from the current pose to pre-defined distance incorporating the desired trajectory. Point cloud processor is employed to identify the closest obstacles around the vehicle. For replanning, Rapidly-exploring Random Trees (RRT*) is used with two modifications which allow planning the trajectory in milliseconds scales. Once we replanned the desired path, velocity components(x,y and z) and yaw rate are calculated. Those values are sent to the controller at a constant frequency to maneuver the vehicle autonomously. Finally, we have evaluated each of the components separately and tested the complete system in the simulated and real environments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2001.03605</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2336777620
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Barriers
Microprocessors
Real time
Trajectory analysis
Trajectory planning
Unmanned aerial vehicles
Yaw
title Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Long%20Range%20Trajectory%20Replanning%20for%20MAVs%20in%20the%20Presence%20of%20Dynamic%20Obstacles&rft.jtitle=arXiv.org&rft.au=Kulathunga,%20Geesara&rft.date=2020-05-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2001.03605&rft_dat=%3Cproquest%3E2336777620%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-2b172320d724d19eba81549caff265291745b85fe64eb1c37bc9d7f6ff2af4703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2336777620&rft_id=info:pmid/&rfr_iscdi=true