Loading…
Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles
Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kulathunga, Geesara Fedorenko, Roman Kopylov, Sergey Klimchik, Alexandr |
description | Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-components of the system including point cloud processor, trajectory estimator and planner. Afterwards, the multi-rotary aerial vehicle starts moving on the given trajectory. When it detects obstacles, it replans the trajectory from the current pose to pre-defined distance incorporating the desired trajectory. Point cloud processor is employed to identify the closest obstacles around the vehicle. For replanning, Rapidly-exploring Random Trees (RRT*) is used with two modifications which allow planning the trajectory in milliseconds scales. Once we replanned the desired path, velocity components(x,y and z) and yaw rate are calculated. Those values are sent to the controller at a constant frequency to maneuver the vehicle autonomously. Finally, we have evaluated each of the components separately and tested the complete system in the simulated and real environments. |
doi_str_mv | 10.48550/arxiv.2001.03605 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2336777620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336777620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-2b172320d724d19eba81549caff265291745b85fe64eb1c37bc9d7f6ff2af4703</originalsourceid><addsrcrecordid>eNotj11LwzAYRoMgOOZ-gHcBr1uTN1_t5ZifUJmMIt6NNHszW7p0Jp24f29Br87FgfPwEHLDWS4LpdidjT_tdw6M8ZwJzdQFmYEQPCskwBVZpNQxxkAbUErMyMcGbZ_V7QFpNYQ93diwR1pH26Ebh3imGzz2NoR2cn6I9HX5nmgb6PiJ9C1iwuCQDp7en4M9tI6umzRa12O6Jpfe9gkX_5yT-vGhXj1n1frpZbWsMquAZdBwAwLYzoDc8RIbW3AlS2e9B62g5EaqplAetcSGO2EaV-6M15O2Xhom5uT2L3uMw9cJ07jthlMM0-J2eq2NMRqY-AUBk1I-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336777620</pqid></control><display><type>article</type><title>Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kulathunga, Geesara ; Fedorenko, Roman ; Kopylov, Sergey ; Klimchik, Alexandr</creator><creatorcontrib>Kulathunga, Geesara ; Fedorenko, Roman ; Kopylov, Sergey ; Klimchik, Alexandr</creatorcontrib><description>Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-components of the system including point cloud processor, trajectory estimator and planner. Afterwards, the multi-rotary aerial vehicle starts moving on the given trajectory. When it detects obstacles, it replans the trajectory from the current pose to pre-defined distance incorporating the desired trajectory. Point cloud processor is employed to identify the closest obstacles around the vehicle. For replanning, Rapidly-exploring Random Trees (RRT*) is used with two modifications which allow planning the trajectory in milliseconds scales. Once we replanned the desired path, velocity components(x,y and z) and yaw rate are calculated. Those values are sent to the controller at a constant frequency to maneuver the vehicle autonomously. Finally, we have evaluated each of the components separately and tested the complete system in the simulated and real environments.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2001.03605</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Barriers ; Microprocessors ; Real time ; Trajectory analysis ; Trajectory planning ; Unmanned aerial vehicles ; Yaw</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2336777620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Kulathunga, Geesara</creatorcontrib><creatorcontrib>Fedorenko, Roman</creatorcontrib><creatorcontrib>Kopylov, Sergey</creatorcontrib><creatorcontrib>Klimchik, Alexandr</creatorcontrib><title>Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles</title><title>arXiv.org</title><description>Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-components of the system including point cloud processor, trajectory estimator and planner. Afterwards, the multi-rotary aerial vehicle starts moving on the given trajectory. When it detects obstacles, it replans the trajectory from the current pose to pre-defined distance incorporating the desired trajectory. Point cloud processor is employed to identify the closest obstacles around the vehicle. For replanning, Rapidly-exploring Random Trees (RRT*) is used with two modifications which allow planning the trajectory in milliseconds scales. Once we replanned the desired path, velocity components(x,y and z) and yaw rate are calculated. Those values are sent to the controller at a constant frequency to maneuver the vehicle autonomously. Finally, we have evaluated each of the components separately and tested the complete system in the simulated and real environments.</description><subject>Barriers</subject><subject>Microprocessors</subject><subject>Real time</subject><subject>Trajectory analysis</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicles</subject><subject>Yaw</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj11LwzAYRoMgOOZ-gHcBr1uTN1_t5ZifUJmMIt6NNHszW7p0Jp24f29Br87FgfPwEHLDWS4LpdidjT_tdw6M8ZwJzdQFmYEQPCskwBVZpNQxxkAbUErMyMcGbZ_V7QFpNYQ93diwR1pH26Ebh3imGzz2NoR2cn6I9HX5nmgb6PiJ9C1iwuCQDp7en4M9tI6umzRa12O6Jpfe9gkX_5yT-vGhXj1n1frpZbWsMquAZdBwAwLYzoDc8RIbW3AlS2e9B62g5EaqplAetcSGO2EaV-6M15O2Xhom5uT2L3uMw9cJ07jthlMM0-J2eq2NMRqY-AUBk1I-</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Kulathunga, Geesara</creator><creator>Fedorenko, Roman</creator><creator>Kopylov, Sergey</creator><creator>Klimchik, Alexandr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200504</creationdate><title>Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles</title><author>Kulathunga, Geesara ; Fedorenko, Roman ; Kopylov, Sergey ; Klimchik, Alexandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-2b172320d724d19eba81549caff265291745b85fe64eb1c37bc9d7f6ff2af4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barriers</topic><topic>Microprocessors</topic><topic>Real time</topic><topic>Trajectory analysis</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicles</topic><topic>Yaw</topic><toplevel>online_resources</toplevel><creatorcontrib>Kulathunga, Geesara</creatorcontrib><creatorcontrib>Fedorenko, Roman</creatorcontrib><creatorcontrib>Kopylov, Sergey</creatorcontrib><creatorcontrib>Klimchik, Alexandr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulathunga, Geesara</au><au>Fedorenko, Roman</au><au>Kopylov, Sergey</au><au>Klimchik, Alexandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles</atitle><jtitle>arXiv.org</jtitle><date>2020-05-04</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired trajectory is needed in the system initialization phase; system starts initializing sub-components of the system including point cloud processor, trajectory estimator and planner. Afterwards, the multi-rotary aerial vehicle starts moving on the given trajectory. When it detects obstacles, it replans the trajectory from the current pose to pre-defined distance incorporating the desired trajectory. Point cloud processor is employed to identify the closest obstacles around the vehicle. For replanning, Rapidly-exploring Random Trees (RRT*) is used with two modifications which allow planning the trajectory in milliseconds scales. Once we replanned the desired path, velocity components(x,y and z) and yaw rate are calculated. Those values are sent to the controller at a constant frequency to maneuver the vehicle autonomously. Finally, we have evaluated each of the components separately and tested the complete system in the simulated and real environments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2001.03605</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2336777620 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Barriers Microprocessors Real time Trajectory analysis Trajectory planning Unmanned aerial vehicles Yaw |
title | Real-Time Long Range Trajectory Replanning for MAVs in the Presence of Dynamic Obstacles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Long%20Range%20Trajectory%20Replanning%20for%20MAVs%20in%20the%20Presence%20of%20Dynamic%20Obstacles&rft.jtitle=arXiv.org&rft.au=Kulathunga,%20Geesara&rft.date=2020-05-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2001.03605&rft_dat=%3Cproquest%3E2336777620%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-2b172320d724d19eba81549caff265291745b85fe64eb1c37bc9d7f6ff2af4703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2336777620&rft_id=info:pmid/&rfr_iscdi=true |