Loading…

Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow

In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equati...

Full description

Saved in:
Bibliographic Details
Published in:Communications on pure and applied mathematics 2020-03, Vol.73 (3), p.465-557
Main Authors: Li, Te, Wei, Dongyi, Zhang, Zhifei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573
cites cdi_FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573
container_end_page 557
container_issue 3
container_start_page 465
container_title Communications on pure and applied mathematics
container_volume 73
creator Li, Te
Wei, Dongyi
Zhang, Zhifei
description In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equations. As an application, we prove that if the initial velocity satisfies∥U0−kf−2sinkfy,0,0∥H2≤cν7/4 (ν the viscosity coefficient) and kf ∈ (0, 1), then the solution does not transition away from the Kolmogorov flow. © 2019 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.21863
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2336993212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336993212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9VecZCyFUkQlOpTZcu0zTZXGwU6o-u8JhJXhdDrpufeVHoRuKZlQQtjUNHrCaC75GRpRUmQJ4ZSdoxEhlCRcCnKJrmLc9ycVOR-h5TpCZ31swLRBV_jBd7XFup9N0HUs29LXeLMLEHe-stj5gNsdYP6IX3118B8--C-8qPzxGl04XUW4-dtj9L542syXyert-WU-WyWGS86TzMlUO7kFITjNKeUMLIjMpExo0KywhZMip0UG0hpN7JZJSzLIDUkdMWnGx-huyG2C_-wgtmrvu1D3lYpxLouCM8p66n6gTPAxBnCqCeVBh5OiRP2IUr0o9SuqZ6cDeywrOP0Pqvl6Nnx8A-d6aPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336993212</pqid></control><display><type>article</type><title>Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow</title><source>Wiley</source><creator>Li, Te ; Wei, Dongyi ; Zhang, Zhifei</creator><creatorcontrib>Li, Te ; Wei, Dongyi ; Zhang, Zhifei</creatorcontrib><description>In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equations. As an application, we prove that if the initial velocity satisfies∥U0−kf−2sinkfy,0,0∥H2≤cν7/4 (ν the viscosity coefficient) and kf ∈ (0, 1), then the solution does not transition away from the Kolmogorov flow. © 2019 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21863</identifier><language>eng</language><publisher>Melbourne: John Wiley &amp; Sons Australia, Ltd</publisher><subject>Fluid dynamics ; Fluid flow ; Linearization ; Mathematical analysis ; Three dimensional flow</subject><ispartof>Communications on pure and applied mathematics, 2020-03, Vol.73 (3), p.465-557</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573</citedby><cites>FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Te</creatorcontrib><creatorcontrib>Wei, Dongyi</creatorcontrib><creatorcontrib>Zhang, Zhifei</creatorcontrib><title>Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow</title><title>Communications on pure and applied mathematics</title><description>In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equations. As an application, we prove that if the initial velocity satisfies∥U0−kf−2sinkfy,0,0∥H2≤cν7/4 (ν the viscosity coefficient) and kf ∈ (0, 1), then the solution does not transition away from the Kolmogorov flow. © 2019 Wiley Periodicals, Inc.</description><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Three dimensional flow</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9VecZCyFUkQlOpTZcu0zTZXGwU6o-u8JhJXhdDrpufeVHoRuKZlQQtjUNHrCaC75GRpRUmQJ4ZSdoxEhlCRcCnKJrmLc9ycVOR-h5TpCZ31swLRBV_jBd7XFup9N0HUs29LXeLMLEHe-stj5gNsdYP6IX3118B8--C-8qPzxGl04XUW4-dtj9L542syXyert-WU-WyWGS86TzMlUO7kFITjNKeUMLIjMpExo0KywhZMip0UG0hpN7JZJSzLIDUkdMWnGx-huyG2C_-wgtmrvu1D3lYpxLouCM8p66n6gTPAxBnCqCeVBh5OiRP2IUr0o9SuqZ6cDeywrOP0Pqvl6Nnx8A-d6aPA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Li, Te</creator><creator>Wei, Dongyi</creator><creator>Zhang, Zhifei</creator><general>John Wiley &amp; Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202003</creationdate><title>Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow</title><author>Li, Te ; Wei, Dongyi ; Zhang, Zhifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Te</creatorcontrib><creatorcontrib>Wei, Dongyi</creatorcontrib><creatorcontrib>Zhang, Zhifei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Te</au><au>Wei, Dongyi</au><au>Zhang, Zhifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2020-03</date><risdate>2020</risdate><volume>73</volume><issue>3</issue><spage>465</spage><epage>557</epage><pages>465-557</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equations. As an application, we prove that if the initial velocity satisfies∥U0−kf−2sinkfy,0,0∥H2≤cν7/4 (ν the viscosity coefficient) and kf ∈ (0, 1), then the solution does not transition away from the Kolmogorov flow. © 2019 Wiley Periodicals, Inc.</abstract><cop>Melbourne</cop><pub>John Wiley &amp; Sons Australia, Ltd</pub><doi>10.1002/cpa.21863</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2020-03, Vol.73 (3), p.465-557
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_2336993212
source Wiley
subjects Fluid dynamics
Fluid flow
Linearization
Mathematical analysis
Three dimensional flow
title Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudospectral%20Bound%20and%20Transition%20Threshold%20for%20the%203D%20Kolmogorov%20Flow&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Li,%20Te&rft.date=2020-03&rft.volume=73&rft.issue=3&rft.spage=465&rft.epage=557&rft.pages=465-557&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21863&rft_dat=%3Cproquest_cross%3E2336993212%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2336993212&rft_id=info:pmid/&rfr_iscdi=true