Loading…
Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow
In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equati...
Saved in:
Published in: | Communications on pure and applied mathematics 2020-03, Vol.73 (3), p.465-557 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573 |
---|---|
cites | cdi_FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573 |
container_end_page | 557 |
container_issue | 3 |
container_start_page | 465 |
container_title | Communications on pure and applied mathematics |
container_volume | 73 |
creator | Li, Te Wei, Dongyi Zhang, Zhifei |
description | In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equations. As an application, we prove that if the initial velocity satisfies∥U0−kf−2sinkfy,0,0∥H2≤cν7/4
(ν the viscosity coefficient) and kf ∈ (0, 1), then the solution does not transition away from the Kolmogorov flow. © 2019 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.21863 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2336993212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336993212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9VecZCyFUkQlOpTZcu0zTZXGwU6o-u8JhJXhdDrpufeVHoRuKZlQQtjUNHrCaC75GRpRUmQJ4ZSdoxEhlCRcCnKJrmLc9ycVOR-h5TpCZ31swLRBV_jBd7XFup9N0HUs29LXeLMLEHe-stj5gNsdYP6IX3118B8--C-8qPzxGl04XUW4-dtj9L542syXyert-WU-WyWGS86TzMlUO7kFITjNKeUMLIjMpExo0KywhZMip0UG0hpN7JZJSzLIDUkdMWnGx-huyG2C_-wgtmrvu1D3lYpxLouCM8p66n6gTPAxBnCqCeVBh5OiRP2IUr0o9SuqZ6cDeywrOP0Pqvl6Nnx8A-d6aPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336993212</pqid></control><display><type>article</type><title>Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow</title><source>Wiley</source><creator>Li, Te ; Wei, Dongyi ; Zhang, Zhifei</creator><creatorcontrib>Li, Te ; Wei, Dongyi ; Zhang, Zhifei</creatorcontrib><description>In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equations. As an application, we prove that if the initial velocity satisfies∥U0−kf−2sinkfy,0,0∥H2≤cν7/4
(ν the viscosity coefficient) and kf ∈ (0, 1), then the solution does not transition away from the Kolmogorov flow. © 2019 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21863</identifier><language>eng</language><publisher>Melbourne: John Wiley & Sons Australia, Ltd</publisher><subject>Fluid dynamics ; Fluid flow ; Linearization ; Mathematical analysis ; Three dimensional flow</subject><ispartof>Communications on pure and applied mathematics, 2020-03, Vol.73 (3), p.465-557</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573</citedby><cites>FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Te</creatorcontrib><creatorcontrib>Wei, Dongyi</creatorcontrib><creatorcontrib>Zhang, Zhifei</creatorcontrib><title>Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow</title><title>Communications on pure and applied mathematics</title><description>In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equations. As an application, we prove that if the initial velocity satisfies∥U0−kf−2sinkfy,0,0∥H2≤cν7/4
(ν the viscosity coefficient) and kf ∈ (0, 1), then the solution does not transition away from the Kolmogorov flow. © 2019 Wiley Periodicals, Inc.</description><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Three dimensional flow</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9VecZCyFUkQlOpTZcu0zTZXGwU6o-u8JhJXhdDrpufeVHoRuKZlQQtjUNHrCaC75GRpRUmQJ4ZSdoxEhlCRcCnKJrmLc9ycVOR-h5TpCZ31swLRBV_jBd7XFup9N0HUs29LXeLMLEHe-stj5gNsdYP6IX3118B8--C-8qPzxGl04XUW4-dtj9L542syXyert-WU-WyWGS86TzMlUO7kFITjNKeUMLIjMpExo0KywhZMip0UG0hpN7JZJSzLIDUkdMWnGx-huyG2C_-wgtmrvu1D3lYpxLouCM8p66n6gTPAxBnCqCeVBh5OiRP2IUr0o9SuqZ6cDeywrOP0Pqvl6Nnx8A-d6aPA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Li, Te</creator><creator>Wei, Dongyi</creator><creator>Zhang, Zhifei</creator><general>John Wiley & Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202003</creationdate><title>Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow</title><author>Li, Te ; Wei, Dongyi ; Zhang, Zhifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Te</creatorcontrib><creatorcontrib>Wei, Dongyi</creatorcontrib><creatorcontrib>Zhang, Zhifei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Te</au><au>Wei, Dongyi</au><au>Zhang, Zhifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2020-03</date><risdate>2020</risdate><volume>73</volume><issue>3</issue><spage>465</spage><epage>557</epage><pages>465-557</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>In this paper, we study pseudospectral bounds for the linearized operator of the Navier‐Stokes equations around the 3D Kolmogorov flow. Using the pseudospectral bound and the wave operator method introduced in [22], we prove the sharp enhanced dissipation rate for the linearized Navier‐Stokes equations. As an application, we prove that if the initial velocity satisfies∥U0−kf−2sinkfy,0,0∥H2≤cν7/4
(ν the viscosity coefficient) and kf ∈ (0, 1), then the solution does not transition away from the Kolmogorov flow. © 2019 Wiley Periodicals, Inc.</abstract><cop>Melbourne</cop><pub>John Wiley & Sons Australia, Ltd</pub><doi>10.1002/cpa.21863</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2020-03, Vol.73 (3), p.465-557 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_2336993212 |
source | Wiley |
subjects | Fluid dynamics Fluid flow Linearization Mathematical analysis Three dimensional flow |
title | Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudospectral%20Bound%20and%20Transition%20Threshold%20for%20the%203D%20Kolmogorov%20Flow&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Li,%20Te&rft.date=2020-03&rft.volume=73&rft.issue=3&rft.spage=465&rft.epage=557&rft.pages=465-557&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21863&rft_dat=%3Cproquest_cross%3E2336993212%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3633-7f65af6be443181132ede47c524aea29d9f648197e6dca0db26d07e8c05f0c573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2336993212&rft_id=info:pmid/&rfr_iscdi=true |