Loading…
Twin nucleation, twin growth and their effects on annealing strengths of Mg–Al–Zn–Mn sheets experienced different pre-compressive strains
We combine pre-compressive test, annealing, re-compressive test, quasi-in-situ optical microscopy (OM), electron backscattered diffraction (EBSD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to systematically investigate the macroscopic yield strength diff...
Saved in:
Published in: | Journal of alloys and compounds 2020-01, Vol.815, p.152310, Article 152310 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We combine pre-compressive test, annealing, re-compressive test, quasi-in-situ optical microscopy (OM), electron backscattered diffraction (EBSD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to systematically investigate the macroscopic yield strength differences (ΔASs) of Mg-1.5Al-1.0Zn-0.3Mn (AZM110, wt.%) sheets with different pre-compressive strains 2%, 4% and 6% after re-compression with annealing, respectively. We observe that with increasing the annealing time, ΔAS firstly increased and then decreased. Moreover, with the increase of pre-compressive strains, ΔAS peak value gradually decreased. Quasi-in-situ OM images reveal that the contribution of new twin nucleation increased and initial twin growth decreased for pre-compressed AZM110 sheets after re-compression with annealing. With the pre-compressive strains, the contribution of new twin nucleation gradually is weakened and initial twin growth is enhanced, which leads to the alteration of ΔAS. By the observation of HAADF-STEM, twin boundaries are stabilized by the segregation of Al and Zn solutes and nano-Al8Mn5 phases pinning, creating pre-compressive annealing strengthening (PCAS). With the annealing time, the disappearance of back stress and dislocation tangle decreases the PCAS effect. Pre-compressive strain also strongly influences the PCAS effect. The increasing volume fraction and width of twins observed from EBSD accelerate twin boundary motion (TBM) with pre-compressive strains from 2% to 4%, decreasing the PCAS effect after re-compression with annealing. Although increasing pre-compressive strain to 6% can put off TBM, low new twin nucleation rate still gives rise to the decreasing PCAS effect.
[Display omitted]
•The increasing twin nucleation and the decreasing twin growth created PCAS effect.•Solute segregation and nano-Al8Mn5 phases pinning impeded twin boundary motion.•Twin volume fraction and width influenced twinning behavior during re-compression.•With the pre-compressive strains, PCAS effect decreased. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2019.152310 |