Loading…

Compensation‐based data‐driven ILC with input and output package dropouts

Summary This paper explores the problem of random data loss at both input and output sides and proposes a compensation‐based data‐driven iterative learning control (cDDILC) to refrain from deteriorating of the control performance due to the data loss. A linear data model is first established to desc...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control 2020-02, Vol.30 (3), p.950-965
Main Authors: Chi, Ronghu, Lv, Yunkai, Hou, Zhongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary This paper explores the problem of random data loss at both input and output sides and proposes a compensation‐based data‐driven iterative learning control (cDDILC) to refrain from deteriorating of the control performance due to the data loss. A linear data model is first established to describe the input‐output dynamics of a repetitive control system in the iteration domain. The linear data model, which only virtually exists in the computer without any physical backgrounds, is employed as a predictive model to estimate and compensate the lost output data. Meanwhile, the lost input data is replaced by the corresponding input of the same time instant in the latest previous iterations. Then, a cDDILC is proposed by introducing two Bernoulli random variables to describe the stochastic data loss at both input and output sides. The proposed cDDILC method is data driven and independent of a precise plant model. Although the design and analysis of the cDDILC start from a MIMO linear repetitive system, one can easily extend the results to a MIMO nonlinear nonaffine one. Theoretical analysis and simulations confirm the efficiency of the proposed cDDILC method.
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.4795