Loading…

A new online approach for classification of pumps vibration patterns based on intelligent IoT system

•A new approach for classification of pumps vibration patterns using an Intelligent IoT Systems.•In order to identify a normal stage of cavitation, we use vibration signal as an image.•Combinations with feature extractors and classifiers for detect incipient cavitation.•The results showed that our a...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2020-02, Vol.151, p.107138, Article 107138
Main Authors: Hu, Qinhua, Ohata, Elene F., Silva, Francisco H.S., Ramalho, Geraldo L.B., Han, Tao, Rebouças Filho, Pedro P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-d003490291870c521d6948e1ae06310f789b387419e2d638c6049dd3305d40493
cites cdi_FETCH-LOGICAL-c402t-d003490291870c521d6948e1ae06310f789b387419e2d638c6049dd3305d40493
container_end_page
container_issue
container_start_page 107138
container_title Measurement : journal of the International Measurement Confederation
container_volume 151
creator Hu, Qinhua
Ohata, Elene F.
Silva, Francisco H.S.
Ramalho, Geraldo L.B.
Han, Tao
Rebouças Filho, Pedro P.
description •A new approach for classification of pumps vibration patterns using an Intelligent IoT Systems.•In order to identify a normal stage of cavitation, we use vibration signal as an image.•Combinations with feature extractors and classifiers for detect incipient cavitation.•The results showed that our approach is reliable and efficient to detect cavitation in pumps. Machine condition monitoring is a primordial field of study. It allows to avoid downtime in industrial plants, avoiding financial and time losses. In this article, we use an IoT framework to classify the pump’s vibration signal, in order to identify a normal stage of operation, an incipient cavitation stage and a severe cavitation stage. Our approach uses the vibration signal, which is collected with a MEMS sensor, as an image. The feature extractors used in this study: Hu’s Moments, Gray Level Co-occurrence Matrix, Local Binary Patterns, DenseNet169, ResNet50, VGG19 and MobileNet. The classifiers used in this paper were: Gaussian Naive Bayes, Support Vector Machines, Random Forest, Multilayer Perceptron and k-Nearest Neighbors (kNN). The results showed that Hu’s Moments combined with kNN achieved the best accuracy (99.47%) with a score time of 17 ms. Thus, our approach is reliable and efficient to detect cavitation in pumps.
doi_str_mv 10.1016/j.measurement.2019.107138
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338160026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224119310048</els_id><sourcerecordid>2338160026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d003490291870c521d6948e1ae06310f789b387419e2d638c6049dd3305d40493</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWKvfIeJ56yRZt5tjKf4DwYuCt5Ams5qym6xJWvHbm7IePHqaYZh5896PkEsGCwasud4uBtRpF3FAnxccmCzzJRPtEZmxdimqmvG3YzID3oiK85qdkrOUtgDQCNnMiF1Rj180-N55pHocY9Dmg3YhUtPrlFznjM4ueBo6Ou6GMdG928RpNOqcMfpENzqhLSLU-Yx9796LGfoYXmj6ThmHc3LS6T7hxW-dk9e725f1Q_X0fP-4Xj1VpgaeKwsgaglcFuNgbjizjaxbZBqLWQbdspUb0S5rJpHbRrSmgVpaKwTc2Lq0Yk6uJt2S4nOHKatt2EVfXiouRMsaOGCYEzltmRhSitipMbpBx2_FQB2gqq36A1UdoKoJarldT7dYYuwdRpWMQ2_QuogmKxvcP1R-AIzQhd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338160026</pqid></control><display><type>article</type><title>A new online approach for classification of pumps vibration patterns based on intelligent IoT system</title><source>ScienceDirect Journals</source><creator>Hu, Qinhua ; Ohata, Elene F. ; Silva, Francisco H.S. ; Ramalho, Geraldo L.B. ; Han, Tao ; Rebouças Filho, Pedro P.</creator><creatorcontrib>Hu, Qinhua ; Ohata, Elene F. ; Silva, Francisco H.S. ; Ramalho, Geraldo L.B. ; Han, Tao ; Rebouças Filho, Pedro P.</creatorcontrib><description>•A new approach for classification of pumps vibration patterns using an Intelligent IoT Systems.•In order to identify a normal stage of cavitation, we use vibration signal as an image.•Combinations with feature extractors and classifiers for detect incipient cavitation.•The results showed that our approach is reliable and efficient to detect cavitation in pumps. Machine condition monitoring is a primordial field of study. It allows to avoid downtime in industrial plants, avoiding financial and time losses. In this article, we use an IoT framework to classify the pump’s vibration signal, in order to identify a normal stage of operation, an incipient cavitation stage and a severe cavitation stage. Our approach uses the vibration signal, which is collected with a MEMS sensor, as an image. The feature extractors used in this study: Hu’s Moments, Gray Level Co-occurrence Matrix, Local Binary Patterns, DenseNet169, ResNet50, VGG19 and MobileNet. The classifiers used in this paper were: Gaussian Naive Bayes, Support Vector Machines, Random Forest, Multilayer Perceptron and k-Nearest Neighbors (kNN). The results showed that Hu’s Moments combined with kNN achieved the best accuracy (99.47%) with a score time of 17 ms. Thus, our approach is reliable and efficient to detect cavitation in pumps.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2019.107138</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Cavitation ; Condition monitoring ; Downtime ; Fault detection ; Feature extraction ; Industrial plants ; Intelligent systems ; Internet of Things ; Machine learning ; Machinery condition monitoring ; Microelectromechanical systems ; Multilayer perceptrons ; Predictive maintenance ; Pumps ; Support vector machines ; Vibration analysis ; Vibration monitoring</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-02, Vol.151, p.107138, Article 107138</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d003490291870c521d6948e1ae06310f789b387419e2d638c6049dd3305d40493</citedby><cites>FETCH-LOGICAL-c402t-d003490291870c521d6948e1ae06310f789b387419e2d638c6049dd3305d40493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Qinhua</creatorcontrib><creatorcontrib>Ohata, Elene F.</creatorcontrib><creatorcontrib>Silva, Francisco H.S.</creatorcontrib><creatorcontrib>Ramalho, Geraldo L.B.</creatorcontrib><creatorcontrib>Han, Tao</creatorcontrib><creatorcontrib>Rebouças Filho, Pedro P.</creatorcontrib><title>A new online approach for classification of pumps vibration patterns based on intelligent IoT system</title><title>Measurement : journal of the International Measurement Confederation</title><description>•A new approach for classification of pumps vibration patterns using an Intelligent IoT Systems.•In order to identify a normal stage of cavitation, we use vibration signal as an image.•Combinations with feature extractors and classifiers for detect incipient cavitation.•The results showed that our approach is reliable and efficient to detect cavitation in pumps. Machine condition monitoring is a primordial field of study. It allows to avoid downtime in industrial plants, avoiding financial and time losses. In this article, we use an IoT framework to classify the pump’s vibration signal, in order to identify a normal stage of operation, an incipient cavitation stage and a severe cavitation stage. Our approach uses the vibration signal, which is collected with a MEMS sensor, as an image. The feature extractors used in this study: Hu’s Moments, Gray Level Co-occurrence Matrix, Local Binary Patterns, DenseNet169, ResNet50, VGG19 and MobileNet. The classifiers used in this paper were: Gaussian Naive Bayes, Support Vector Machines, Random Forest, Multilayer Perceptron and k-Nearest Neighbors (kNN). The results showed that Hu’s Moments combined with kNN achieved the best accuracy (99.47%) with a score time of 17 ms. Thus, our approach is reliable and efficient to detect cavitation in pumps.</description><subject>Cavitation</subject><subject>Condition monitoring</subject><subject>Downtime</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Industrial plants</subject><subject>Intelligent systems</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Machinery condition monitoring</subject><subject>Microelectromechanical systems</subject><subject>Multilayer perceptrons</subject><subject>Predictive maintenance</subject><subject>Pumps</subject><subject>Support vector machines</subject><subject>Vibration analysis</subject><subject>Vibration monitoring</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LAzEQxYMoWKvfIeJ56yRZt5tjKf4DwYuCt5Ams5qym6xJWvHbm7IePHqaYZh5896PkEsGCwasud4uBtRpF3FAnxccmCzzJRPtEZmxdimqmvG3YzID3oiK85qdkrOUtgDQCNnMiF1Rj180-N55pHocY9Dmg3YhUtPrlFznjM4ueBo6Ou6GMdG928RpNOqcMfpENzqhLSLU-Yx9796LGfoYXmj6ThmHc3LS6T7hxW-dk9e725f1Q_X0fP-4Xj1VpgaeKwsgaglcFuNgbjizjaxbZBqLWQbdspUb0S5rJpHbRrSmgVpaKwTc2Lq0Yk6uJt2S4nOHKatt2EVfXiouRMsaOGCYEzltmRhSitipMbpBx2_FQB2gqq36A1UdoKoJarldT7dYYuwdRpWMQ2_QuogmKxvcP1R-AIzQhd8</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Hu, Qinhua</creator><creator>Ohata, Elene F.</creator><creator>Silva, Francisco H.S.</creator><creator>Ramalho, Geraldo L.B.</creator><creator>Han, Tao</creator><creator>Rebouças Filho, Pedro P.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>A new online approach for classification of pumps vibration patterns based on intelligent IoT system</title><author>Hu, Qinhua ; Ohata, Elene F. ; Silva, Francisco H.S. ; Ramalho, Geraldo L.B. ; Han, Tao ; Rebouças Filho, Pedro P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d003490291870c521d6948e1ae06310f789b387419e2d638c6049dd3305d40493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cavitation</topic><topic>Condition monitoring</topic><topic>Downtime</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Industrial plants</topic><topic>Intelligent systems</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Machinery condition monitoring</topic><topic>Microelectromechanical systems</topic><topic>Multilayer perceptrons</topic><topic>Predictive maintenance</topic><topic>Pumps</topic><topic>Support vector machines</topic><topic>Vibration analysis</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qinhua</creatorcontrib><creatorcontrib>Ohata, Elene F.</creatorcontrib><creatorcontrib>Silva, Francisco H.S.</creatorcontrib><creatorcontrib>Ramalho, Geraldo L.B.</creatorcontrib><creatorcontrib>Han, Tao</creatorcontrib><creatorcontrib>Rebouças Filho, Pedro P.</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Qinhua</au><au>Ohata, Elene F.</au><au>Silva, Francisco H.S.</au><au>Ramalho, Geraldo L.B.</au><au>Han, Tao</au><au>Rebouças Filho, Pedro P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new online approach for classification of pumps vibration patterns based on intelligent IoT system</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>151</volume><spage>107138</spage><pages>107138-</pages><artnum>107138</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•A new approach for classification of pumps vibration patterns using an Intelligent IoT Systems.•In order to identify a normal stage of cavitation, we use vibration signal as an image.•Combinations with feature extractors and classifiers for detect incipient cavitation.•The results showed that our approach is reliable and efficient to detect cavitation in pumps. Machine condition monitoring is a primordial field of study. It allows to avoid downtime in industrial plants, avoiding financial and time losses. In this article, we use an IoT framework to classify the pump’s vibration signal, in order to identify a normal stage of operation, an incipient cavitation stage and a severe cavitation stage. Our approach uses the vibration signal, which is collected with a MEMS sensor, as an image. The feature extractors used in this study: Hu’s Moments, Gray Level Co-occurrence Matrix, Local Binary Patterns, DenseNet169, ResNet50, VGG19 and MobileNet. The classifiers used in this paper were: Gaussian Naive Bayes, Support Vector Machines, Random Forest, Multilayer Perceptron and k-Nearest Neighbors (kNN). The results showed that Hu’s Moments combined with kNN achieved the best accuracy (99.47%) with a score time of 17 ms. Thus, our approach is reliable and efficient to detect cavitation in pumps.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2019.107138</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2020-02, Vol.151, p.107138, Article 107138
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2338160026
source ScienceDirect Journals
subjects Cavitation
Condition monitoring
Downtime
Fault detection
Feature extraction
Industrial plants
Intelligent systems
Internet of Things
Machine learning
Machinery condition monitoring
Microelectromechanical systems
Multilayer perceptrons
Predictive maintenance
Pumps
Support vector machines
Vibration analysis
Vibration monitoring
title A new online approach for classification of pumps vibration patterns based on intelligent IoT system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20online%20approach%20for%20classification%20of%20pumps%20vibration%20patterns%20based%20on%20intelligent%20IoT%20system&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Hu,%20Qinhua&rft.date=2020-02-01&rft.volume=151&rft.spage=107138&rft.pages=107138-&rft.artnum=107138&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2019.107138&rft_dat=%3Cproquest_cross%3E2338160026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-d003490291870c521d6948e1ae06310f789b387419e2d638c6049dd3305d40493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2338160026&rft_id=info:pmid/&rfr_iscdi=true