Loading…

Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection

Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2020-04, Vol.35 (4), p.4439-4447
Main Authors: Song, Ziyou, Wang, Hao, Hou, Jun, Hofmann, Heath F., Sun, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3
cites cdi_FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3
container_end_page 4447
container_issue 4
container_start_page 4439
container_title IEEE transactions on power electronics
container_volume 35
creator Song, Ziyou
Wang, Hao
Hou, Jun
Hofmann, Heath F.
Sun, Jing
description Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and the estimation accuracy is limited by measurement noise and model inaccuracy. Note that for overactuated systems (e.g., hybrid energy storage systems and hybrid electric vehicles), the over actuation feature can be exploited to optimize the battery current profile for the estimation purpose. This article shows the potential to improve estimation accuracy when the desired current is actively injected and the estimation algorithm is properly structured. Specifically, by incorporating a high-pass filter, battery parameters can be independently characterized by injecting high-frequency and medium-frequency currents, and battery SoC/SoH can then be estimated sequentially from the estimated parameters. A Cramer-Rao bound analysis shows that the accuracy of the proposed sequential estimation is much better than the case where all parameters and states are simultaneously estimated. The analysis is verified by simulation and experimental results. We point out that for battery-only applications (e.g., electric vehicles); the proposed method has limitations, as generally, the battery current profile cannot be changed.
doi_str_mv 10.1109/TPEL.2019.2945513
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338663356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8859241</ieee_id><sourcerecordid>2338663356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6m_1o9lhD1ULAghUvQthsZjHFJHWzFfrv3dDiaZjheWeYh5BbBjPGQD9s1stilgLTs1QLKRk_IxOmBUuAwfycTCDLZJJpzS_J1TBsAZiQwCbkM-_bqumwpm_BBKSmq-naeNNiQE-XQ2haE5q-o72jRRO-mn2brGL7aEIEDvQjzujChuYXab73HrtAV90W7Ri6JhfOfA94c6pT8v603OQvSfH6vMoXRWJTzUNSSYNK1NJk1ipZMV2D4Q6wcpILRG4ZWM1BcDvHKhOglMmcdsIqZxRoy6fk_rh35_ufPQ6h3PZ738WTZcp5phTnUkWKHSnr-2Hw6Mqdj9_5Q8mgHCWWo8RylFieJMbM3THTIOI_H13qVDD-ByL5bkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338663356</pqid></control><display><type>article</type><title>Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Song, Ziyou ; Wang, Hao ; Hou, Jun ; Hofmann, Heath F. ; Sun, Jing</creator><creatorcontrib>Song, Ziyou ; Wang, Hao ; Hou, Jun ; Hofmann, Heath F. ; Sun, Jing</creatorcontrib><description>Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and the estimation accuracy is limited by measurement noise and model inaccuracy. Note that for overactuated systems (e.g., hybrid energy storage systems and hybrid electric vehicles), the over actuation feature can be exploited to optimize the battery current profile for the estimation purpose. This article shows the potential to improve estimation accuracy when the desired current is actively injected and the estimation algorithm is properly structured. Specifically, by incorporating a high-pass filter, battery parameters can be independently characterized by injecting high-frequency and medium-frequency currents, and battery SoC/SoH can then be estimated sequentially from the estimated parameters. A Cramer-Rao bound analysis shows that the accuracy of the proposed sequential estimation is much better than the case where all parameters and states are simultaneously estimated. The analysis is verified by simulation and experimental results. We point out that for battery-only applications (e.g., electric vehicles); the proposed method has limitations, as generally, the battery current profile cannot be changed.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2019.2945513</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Battery charge measurement ; Computer simulation ; Cramer-rao bounds ; Current injection ; Electric vehicles ; Energy storage ; Estimation ; estimation error ; High pass filters ; Hybrid electric vehicles ; Hybrid systems ; Integrated circuit modeling ; Lithium ; lithium batteries ; Lithium-ion batteries ; Noise measurement ; Optimization ; Parameter estimation ; Rechargeable batteries ; sequential analysis ; state estimation ; State of charge ; Storage systems</subject><ispartof>IEEE transactions on power electronics, 2020-04, Vol.35 (4), p.4439-4447</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3</citedby><cites>FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3</cites><orcidid>0000-0001-7116-2945 ; 0000-0003-0915-2919 ; 0000-0002-1223-8986 ; 0000-0003-3164-5234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8859241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Song, Ziyou</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Hou, Jun</creatorcontrib><creatorcontrib>Hofmann, Heath F.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><title>Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and the estimation accuracy is limited by measurement noise and model inaccuracy. Note that for overactuated systems (e.g., hybrid energy storage systems and hybrid electric vehicles), the over actuation feature can be exploited to optimize the battery current profile for the estimation purpose. This article shows the potential to improve estimation accuracy when the desired current is actively injected and the estimation algorithm is properly structured. Specifically, by incorporating a high-pass filter, battery parameters can be independently characterized by injecting high-frequency and medium-frequency currents, and battery SoC/SoH can then be estimated sequentially from the estimated parameters. A Cramer-Rao bound analysis shows that the accuracy of the proposed sequential estimation is much better than the case where all parameters and states are simultaneously estimated. The analysis is verified by simulation and experimental results. We point out that for battery-only applications (e.g., electric vehicles); the proposed method has limitations, as generally, the battery current profile cannot be changed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Battery charge measurement</subject><subject>Computer simulation</subject><subject>Cramer-rao bounds</subject><subject>Current injection</subject><subject>Electric vehicles</subject><subject>Energy storage</subject><subject>Estimation</subject><subject>estimation error</subject><subject>High pass filters</subject><subject>Hybrid electric vehicles</subject><subject>Hybrid systems</subject><subject>Integrated circuit modeling</subject><subject>Lithium</subject><subject>lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Rechargeable batteries</subject><subject>sequential analysis</subject><subject>state estimation</subject><subject>State of charge</subject><subject>Storage systems</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6m_1o9lhD1ULAghUvQthsZjHFJHWzFfrv3dDiaZjheWeYh5BbBjPGQD9s1stilgLTs1QLKRk_IxOmBUuAwfycTCDLZJJpzS_J1TBsAZiQwCbkM-_bqumwpm_BBKSmq-naeNNiQE-XQ2haE5q-o72jRRO-mn2brGL7aEIEDvQjzujChuYXab73HrtAV90W7Ri6JhfOfA94c6pT8v603OQvSfH6vMoXRWJTzUNSSYNK1NJk1ipZMV2D4Q6wcpILRG4ZWM1BcDvHKhOglMmcdsIqZxRoy6fk_rh35_ufPQ6h3PZ738WTZcp5phTnUkWKHSnr-2Hw6Mqdj9_5Q8mgHCWWo8RylFieJMbM3THTIOI_H13qVDD-ByL5bkA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Song, Ziyou</creator><creator>Wang, Hao</creator><creator>Hou, Jun</creator><creator>Hofmann, Heath F.</creator><creator>Sun, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7116-2945</orcidid><orcidid>https://orcid.org/0000-0003-0915-2919</orcidid><orcidid>https://orcid.org/0000-0002-1223-8986</orcidid><orcidid>https://orcid.org/0000-0003-3164-5234</orcidid></search><sort><creationdate>20200401</creationdate><title>Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection</title><author>Song, Ziyou ; Wang, Hao ; Hou, Jun ; Hofmann, Heath F. ; Sun, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Battery charge measurement</topic><topic>Computer simulation</topic><topic>Cramer-rao bounds</topic><topic>Current injection</topic><topic>Electric vehicles</topic><topic>Energy storage</topic><topic>Estimation</topic><topic>estimation error</topic><topic>High pass filters</topic><topic>Hybrid electric vehicles</topic><topic>Hybrid systems</topic><topic>Integrated circuit modeling</topic><topic>Lithium</topic><topic>lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Rechargeable batteries</topic><topic>sequential analysis</topic><topic>state estimation</topic><topic>State of charge</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Ziyou</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Hou, Jun</creatorcontrib><creatorcontrib>Hofmann, Heath F.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Ziyou</au><au>Wang, Hao</au><au>Hou, Jun</au><au>Hofmann, Heath F.</au><au>Sun, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>35</volume><issue>4</issue><spage>4439</spage><epage>4447</epage><pages>4439-4447</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and the estimation accuracy is limited by measurement noise and model inaccuracy. Note that for overactuated systems (e.g., hybrid energy storage systems and hybrid electric vehicles), the over actuation feature can be exploited to optimize the battery current profile for the estimation purpose. This article shows the potential to improve estimation accuracy when the desired current is actively injected and the estimation algorithm is properly structured. Specifically, by incorporating a high-pass filter, battery parameters can be independently characterized by injecting high-frequency and medium-frequency currents, and battery SoC/SoH can then be estimated sequentially from the estimated parameters. A Cramer-Rao bound analysis shows that the accuracy of the proposed sequential estimation is much better than the case where all parameters and states are simultaneously estimated. The analysis is verified by simulation and experimental results. We point out that for battery-only applications (e.g., electric vehicles); the proposed method has limitations, as generally, the battery current profile cannot be changed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2019.2945513</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7116-2945</orcidid><orcidid>https://orcid.org/0000-0003-0915-2919</orcidid><orcidid>https://orcid.org/0000-0002-1223-8986</orcidid><orcidid>https://orcid.org/0000-0003-3164-5234</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2020-04, Vol.35 (4), p.4439-4447
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2338663356
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Algorithms
Battery charge measurement
Computer simulation
Cramer-rao bounds
Current injection
Electric vehicles
Energy storage
Estimation
estimation error
High pass filters
Hybrid electric vehicles
Hybrid systems
Integrated circuit modeling
Lithium
lithium batteries
Lithium-ion batteries
Noise measurement
Optimization
Parameter estimation
Rechargeable batteries
sequential analysis
state estimation
State of charge
Storage systems
title Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20State%20and%20Parameter%20Estimation%20of%20Lithium-Ion%20Battery%20With%20Active%20Current%20Injection&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Song,%20Ziyou&rft.date=2020-04-01&rft.volume=35&rft.issue=4&rft.spage=4439&rft.epage=4447&rft.pages=4439-4447&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2019.2945513&rft_dat=%3Cproquest_cross%3E2338663356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2338663356&rft_id=info:pmid/&rft_ieee_id=8859241&rfr_iscdi=true