Loading…
Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection
Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and...
Saved in:
Published in: | IEEE transactions on power electronics 2020-04, Vol.35 (4), p.4439-4447 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3 |
container_end_page | 4447 |
container_issue | 4 |
container_start_page | 4439 |
container_title | IEEE transactions on power electronics |
container_volume | 35 |
creator | Song, Ziyou Wang, Hao Hou, Jun Hofmann, Heath F. Sun, Jing |
description | Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and the estimation accuracy is limited by measurement noise and model inaccuracy. Note that for overactuated systems (e.g., hybrid energy storage systems and hybrid electric vehicles), the over actuation feature can be exploited to optimize the battery current profile for the estimation purpose. This article shows the potential to improve estimation accuracy when the desired current is actively injected and the estimation algorithm is properly structured. Specifically, by incorporating a high-pass filter, battery parameters can be independently characterized by injecting high-frequency and medium-frequency currents, and battery SoC/SoH can then be estimated sequentially from the estimated parameters. A Cramer-Rao bound analysis shows that the accuracy of the proposed sequential estimation is much better than the case where all parameters and states are simultaneously estimated. The analysis is verified by simulation and experimental results. We point out that for battery-only applications (e.g., electric vehicles); the proposed method has limitations, as generally, the battery current profile cannot be changed. |
doi_str_mv | 10.1109/TPEL.2019.2945513 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2338663356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8859241</ieee_id><sourcerecordid>2338663356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6m_1o9lhD1ULAghUvQthsZjHFJHWzFfrv3dDiaZjheWeYh5BbBjPGQD9s1stilgLTs1QLKRk_IxOmBUuAwfycTCDLZJJpzS_J1TBsAZiQwCbkM-_bqumwpm_BBKSmq-naeNNiQE-XQ2haE5q-o72jRRO-mn2brGL7aEIEDvQjzujChuYXab73HrtAV90W7Ri6JhfOfA94c6pT8v603OQvSfH6vMoXRWJTzUNSSYNK1NJk1ipZMV2D4Q6wcpILRG4ZWM1BcDvHKhOglMmcdsIqZxRoy6fk_rh35_ufPQ6h3PZ738WTZcp5phTnUkWKHSnr-2Hw6Mqdj9_5Q8mgHCWWo8RylFieJMbM3THTIOI_H13qVDD-ByL5bkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338663356</pqid></control><display><type>article</type><title>Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Song, Ziyou ; Wang, Hao ; Hou, Jun ; Hofmann, Heath F. ; Sun, Jing</creator><creatorcontrib>Song, Ziyou ; Wang, Hao ; Hou, Jun ; Hofmann, Heath F. ; Sun, Jing</creatorcontrib><description>Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and the estimation accuracy is limited by measurement noise and model inaccuracy. Note that for overactuated systems (e.g., hybrid energy storage systems and hybrid electric vehicles), the over actuation feature can be exploited to optimize the battery current profile for the estimation purpose. This article shows the potential to improve estimation accuracy when the desired current is actively injected and the estimation algorithm is properly structured. Specifically, by incorporating a high-pass filter, battery parameters can be independently characterized by injecting high-frequency and medium-frequency currents, and battery SoC/SoH can then be estimated sequentially from the estimated parameters. A Cramer-Rao bound analysis shows that the accuracy of the proposed sequential estimation is much better than the case where all parameters and states are simultaneously estimated. The analysis is verified by simulation and experimental results. We point out that for battery-only applications (e.g., electric vehicles); the proposed method has limitations, as generally, the battery current profile cannot be changed.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2019.2945513</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Battery charge measurement ; Computer simulation ; Cramer-rao bounds ; Current injection ; Electric vehicles ; Energy storage ; Estimation ; estimation error ; High pass filters ; Hybrid electric vehicles ; Hybrid systems ; Integrated circuit modeling ; Lithium ; lithium batteries ; Lithium-ion batteries ; Noise measurement ; Optimization ; Parameter estimation ; Rechargeable batteries ; sequential analysis ; state estimation ; State of charge ; Storage systems</subject><ispartof>IEEE transactions on power electronics, 2020-04, Vol.35 (4), p.4439-4447</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3</citedby><cites>FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3</cites><orcidid>0000-0001-7116-2945 ; 0000-0003-0915-2919 ; 0000-0002-1223-8986 ; 0000-0003-3164-5234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8859241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Song, Ziyou</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Hou, Jun</creatorcontrib><creatorcontrib>Hofmann, Heath F.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><title>Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and the estimation accuracy is limited by measurement noise and model inaccuracy. Note that for overactuated systems (e.g., hybrid energy storage systems and hybrid electric vehicles), the over actuation feature can be exploited to optimize the battery current profile for the estimation purpose. This article shows the potential to improve estimation accuracy when the desired current is actively injected and the estimation algorithm is properly structured. Specifically, by incorporating a high-pass filter, battery parameters can be independently characterized by injecting high-frequency and medium-frequency currents, and battery SoC/SoH can then be estimated sequentially from the estimated parameters. A Cramer-Rao bound analysis shows that the accuracy of the proposed sequential estimation is much better than the case where all parameters and states are simultaneously estimated. The analysis is verified by simulation and experimental results. We point out that for battery-only applications (e.g., electric vehicles); the proposed method has limitations, as generally, the battery current profile cannot be changed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Battery charge measurement</subject><subject>Computer simulation</subject><subject>Cramer-rao bounds</subject><subject>Current injection</subject><subject>Electric vehicles</subject><subject>Energy storage</subject><subject>Estimation</subject><subject>estimation error</subject><subject>High pass filters</subject><subject>Hybrid electric vehicles</subject><subject>Hybrid systems</subject><subject>Integrated circuit modeling</subject><subject>Lithium</subject><subject>lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Rechargeable batteries</subject><subject>sequential analysis</subject><subject>state estimation</subject><subject>State of charge</subject><subject>Storage systems</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6m_1o9lhD1ULAghUvQthsZjHFJHWzFfrv3dDiaZjheWeYh5BbBjPGQD9s1stilgLTs1QLKRk_IxOmBUuAwfycTCDLZJJpzS_J1TBsAZiQwCbkM-_bqumwpm_BBKSmq-naeNNiQE-XQ2haE5q-o72jRRO-mn2brGL7aEIEDvQjzujChuYXab73HrtAV90W7Ri6JhfOfA94c6pT8v603OQvSfH6vMoXRWJTzUNSSYNK1NJk1ipZMV2D4Q6wcpILRG4ZWM1BcDvHKhOglMmcdsIqZxRoy6fk_rh35_ufPQ6h3PZ738WTZcp5phTnUkWKHSnr-2Hw6Mqdj9_5Q8mgHCWWo8RylFieJMbM3THTIOI_H13qVDD-ByL5bkA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Song, Ziyou</creator><creator>Wang, Hao</creator><creator>Hou, Jun</creator><creator>Hofmann, Heath F.</creator><creator>Sun, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7116-2945</orcidid><orcidid>https://orcid.org/0000-0003-0915-2919</orcidid><orcidid>https://orcid.org/0000-0002-1223-8986</orcidid><orcidid>https://orcid.org/0000-0003-3164-5234</orcidid></search><sort><creationdate>20200401</creationdate><title>Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection</title><author>Song, Ziyou ; Wang, Hao ; Hou, Jun ; Hofmann, Heath F. ; Sun, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Battery charge measurement</topic><topic>Computer simulation</topic><topic>Cramer-rao bounds</topic><topic>Current injection</topic><topic>Electric vehicles</topic><topic>Energy storage</topic><topic>Estimation</topic><topic>estimation error</topic><topic>High pass filters</topic><topic>Hybrid electric vehicles</topic><topic>Hybrid systems</topic><topic>Integrated circuit modeling</topic><topic>Lithium</topic><topic>lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Rechargeable batteries</topic><topic>sequential analysis</topic><topic>state estimation</topic><topic>State of charge</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Ziyou</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Hou, Jun</creatorcontrib><creatorcontrib>Hofmann, Heath F.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Ziyou</au><au>Wang, Hao</au><au>Hou, Jun</au><au>Hofmann, Heath F.</au><au>Sun, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>35</volume><issue>4</issue><spage>4439</spage><epage>4447</epage><pages>4439-4447</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Estimating the State-of-Charge (SoC) and State-of-Health (SoH), together with the parameters used in representing the dynamics of a lithium-ion battery, is essential to ensure optimal and reliable operation. However, this simultaneous estimation can take a significant amount of time to converge, and the estimation accuracy is limited by measurement noise and model inaccuracy. Note that for overactuated systems (e.g., hybrid energy storage systems and hybrid electric vehicles), the over actuation feature can be exploited to optimize the battery current profile for the estimation purpose. This article shows the potential to improve estimation accuracy when the desired current is actively injected and the estimation algorithm is properly structured. Specifically, by incorporating a high-pass filter, battery parameters can be independently characterized by injecting high-frequency and medium-frequency currents, and battery SoC/SoH can then be estimated sequentially from the estimated parameters. A Cramer-Rao bound analysis shows that the accuracy of the proposed sequential estimation is much better than the case where all parameters and states are simultaneously estimated. The analysis is verified by simulation and experimental results. We point out that for battery-only applications (e.g., electric vehicles); the proposed method has limitations, as generally, the battery current profile cannot be changed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2019.2945513</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7116-2945</orcidid><orcidid>https://orcid.org/0000-0003-0915-2919</orcidid><orcidid>https://orcid.org/0000-0002-1223-8986</orcidid><orcidid>https://orcid.org/0000-0003-3164-5234</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2020-04, Vol.35 (4), p.4439-4447 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_2338663356 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Algorithms Battery charge measurement Computer simulation Cramer-rao bounds Current injection Electric vehicles Energy storage Estimation estimation error High pass filters Hybrid electric vehicles Hybrid systems Integrated circuit modeling Lithium lithium batteries Lithium-ion batteries Noise measurement Optimization Parameter estimation Rechargeable batteries sequential analysis state estimation State of charge Storage systems |
title | Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20State%20and%20Parameter%20Estimation%20of%20Lithium-Ion%20Battery%20With%20Active%20Current%20Injection&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Song,%20Ziyou&rft.date=2020-04-01&rft.volume=35&rft.issue=4&rft.spage=4439&rft.epage=4447&rft.pages=4439-4447&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2019.2945513&rft_dat=%3Cproquest_cross%3E2338663356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b5ae64d5a8cc65b19d0a3f0ebf534ee3c10c93043c7eb84066a8f9f4c6fa609c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2338663356&rft_id=info:pmid/&rft_ieee_id=8859241&rfr_iscdi=true |