Loading…

Multipath Broadband Localization, Bathymetry, and Sediment Inversion

Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surfa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of oceanic engineering 2020-01, Vol.45 (1), p.92-102
Main Authors: Michalopoulou, Zoi-Heleni, Gerstoft, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83
cites cdi_FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83
container_end_page 102
container_issue 1
container_start_page 92
container_title IEEE journal of oceanic engineering
container_volume 45
creator Michalopoulou, Zoi-Heleni
Gerstoft, Peter
description Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surface reflection, bottom reflection, and sediment reflection. Accurate estimation of arrival times of such paths is tightly related to successful inversion for source location and water column depth and sound speed and, subsequently, estimation of sediment sound speed and thickness. To achieve accurate estimation, particle filtering is applied to the received time series at 16 phones combined with a simple cross-correlation method. Using linearization, arrival time probability density functions are connected to the geometry and water column sound-speed parameters, providing point estimates as well as probability densities. These are then employed in sediment sound speed and thickness estimation. The results, obtained from the application of the method to data collected during the Seabed Characterization Experiment, are consistent with prior information on the site.
doi_str_mv 10.1109/JOE.2019.2896681
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2339384726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8669831</ieee_id><sourcerecordid>2339384726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpuA26bem3lkZmm1aqXShboeJvPAlDapk6lQf70pLa7u4nznXPgIuUYYI4K6e11MxwWgGhdSCSHxhAyQc5mjUHhKBkAFyxVwdU4uum4JgIyVakAe37arVG9M-somsTWuMo3L5q01q_rXpLptRtmkD3drn-JulO3Td-_qtW9SNmt-fOx65pKcBbPq_NXxDsnn0_Tj4SWfL55nD_fz3DJgKee-QiGtKqQEx4WD0qFA4AhIAxaWeXAsMGtZJUJZ9aiveLBGAAsKKkmH5Pawu4nt99Z3SS_bbWz6l7qgVFHJykL0FBwoG9uuiz7oTazXJu40gt670r0rvXelj676ys2hUnvv_3EphJIU6R-eA2SN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339384726</pqid></control><display><type>article</type><title>Multipath Broadband Localization, Bathymetry, and Sediment Inversion</title><source>IEEE Xplore (Online service)</source><creator>Michalopoulou, Zoi-Heleni ; Gerstoft, Peter</creator><creatorcontrib>Michalopoulou, Zoi-Heleni ; Gerstoft, Peter</creatorcontrib><description>Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surface reflection, bottom reflection, and sediment reflection. Accurate estimation of arrival times of such paths is tightly related to successful inversion for source location and water column depth and sound speed and, subsequently, estimation of sediment sound speed and thickness. To achieve accurate estimation, particle filtering is applied to the received time series at 16 phones combined with a simple cross-correlation method. Using linearization, arrival time probability density functions are connected to the geometry and water column sound-speed parameters, providing point estimates as well as probability densities. These are then employed in sediment sound speed and thickness estimation. The results, obtained from the application of the method to data collected during the Seabed Characterization Experiment, are consistent with prior information on the site.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2019.2896681</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bathymeters ; Bathymetry ; Broadband ; Estimation ; Geoacoustic inversion ; Impulse response ; Jacobian matrices ; linearization ; Ocean floor ; Parameter estimation ; particle filter ; Probability density function ; Probability density functions ; Probability theory ; Receivers ; Reflection ; Sea measurements ; Sediment ; Sediments ; Sound ; Sound velocity ; Thickness ; Water circulation ; Water column ; Water depth ; Water resources</subject><ispartof>IEEE journal of oceanic engineering, 2020-01, Vol.45 (1), p.92-102</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83</citedby><cites>FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83</cites><orcidid>0000-0001-8153-7851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8669831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Michalopoulou, Zoi-Heleni</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><title>Multipath Broadband Localization, Bathymetry, and Sediment Inversion</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surface reflection, bottom reflection, and sediment reflection. Accurate estimation of arrival times of such paths is tightly related to successful inversion for source location and water column depth and sound speed and, subsequently, estimation of sediment sound speed and thickness. To achieve accurate estimation, particle filtering is applied to the received time series at 16 phones combined with a simple cross-correlation method. Using linearization, arrival time probability density functions are connected to the geometry and water column sound-speed parameters, providing point estimates as well as probability densities. These are then employed in sediment sound speed and thickness estimation. The results, obtained from the application of the method to data collected during the Seabed Characterization Experiment, are consistent with prior information on the site.</description><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>Broadband</subject><subject>Estimation</subject><subject>Geoacoustic inversion</subject><subject>Impulse response</subject><subject>Jacobian matrices</subject><subject>linearization</subject><subject>Ocean floor</subject><subject>Parameter estimation</subject><subject>particle filter</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Receivers</subject><subject>Reflection</subject><subject>Sea measurements</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Sound</subject><subject>Sound velocity</subject><subject>Thickness</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water depth</subject><subject>Water resources</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb3gpuA26bem3lkZmm1aqXShboeJvPAlDapk6lQf70pLa7u4nznXPgIuUYYI4K6e11MxwWgGhdSCSHxhAyQc5mjUHhKBkAFyxVwdU4uum4JgIyVakAe37arVG9M-somsTWuMo3L5q01q_rXpLptRtmkD3drn-JulO3Td-_qtW9SNmt-fOx65pKcBbPq_NXxDsnn0_Tj4SWfL55nD_fz3DJgKee-QiGtKqQEx4WD0qFA4AhIAxaWeXAsMGtZJUJZ9aiveLBGAAsKKkmH5Pawu4nt99Z3SS_bbWz6l7qgVFHJykL0FBwoG9uuiz7oTazXJu40gt670r0rvXelj676ys2hUnvv_3EphJIU6R-eA2SN</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Michalopoulou, Zoi-Heleni</creator><creator>Gerstoft, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8153-7851</orcidid></search><sort><creationdate>202001</creationdate><title>Multipath Broadband Localization, Bathymetry, and Sediment Inversion</title><author>Michalopoulou, Zoi-Heleni ; Gerstoft, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>Broadband</topic><topic>Estimation</topic><topic>Geoacoustic inversion</topic><topic>Impulse response</topic><topic>Jacobian matrices</topic><topic>linearization</topic><topic>Ocean floor</topic><topic>Parameter estimation</topic><topic>particle filter</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Receivers</topic><topic>Reflection</topic><topic>Sea measurements</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Sound</topic><topic>Sound velocity</topic><topic>Thickness</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water depth</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalopoulou, Zoi-Heleni</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalopoulou, Zoi-Heleni</au><au>Gerstoft, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipath Broadband Localization, Bathymetry, and Sediment Inversion</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2020-01</date><risdate>2020</risdate><volume>45</volume><issue>1</issue><spage>92</spage><epage>102</epage><pages>92-102</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surface reflection, bottom reflection, and sediment reflection. Accurate estimation of arrival times of such paths is tightly related to successful inversion for source location and water column depth and sound speed and, subsequently, estimation of sediment sound speed and thickness. To achieve accurate estimation, particle filtering is applied to the received time series at 16 phones combined with a simple cross-correlation method. Using linearization, arrival time probability density functions are connected to the geometry and water column sound-speed parameters, providing point estimates as well as probability densities. These are then employed in sediment sound speed and thickness estimation. The results, obtained from the application of the method to data collected during the Seabed Characterization Experiment, are consistent with prior information on the site.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2019.2896681</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8153-7851</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 2020-01, Vol.45 (1), p.92-102
issn 0364-9059
1558-1691
language eng
recordid cdi_proquest_journals_2339384726
source IEEE Xplore (Online service)
subjects Bathymeters
Bathymetry
Broadband
Estimation
Geoacoustic inversion
Impulse response
Jacobian matrices
linearization
Ocean floor
Parameter estimation
particle filter
Probability density function
Probability density functions
Probability theory
Receivers
Reflection
Sea measurements
Sediment
Sediments
Sound
Sound velocity
Thickness
Water circulation
Water column
Water depth
Water resources
title Multipath Broadband Localization, Bathymetry, and Sediment Inversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipath%20Broadband%20Localization,%20Bathymetry,%20and%20Sediment%20Inversion&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Michalopoulou,%20Zoi-Heleni&rft.date=2020-01&rft.volume=45&rft.issue=1&rft.spage=92&rft.epage=102&rft.pages=92-102&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2019.2896681&rft_dat=%3Cproquest_cross%3E2339384726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2339384726&rft_id=info:pmid/&rft_ieee_id=8669831&rfr_iscdi=true