Loading…
Multipath Broadband Localization, Bathymetry, and Sediment Inversion
Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surfa...
Saved in:
Published in: | IEEE journal of oceanic engineering 2020-01, Vol.45 (1), p.92-102 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83 |
container_end_page | 102 |
container_issue | 1 |
container_start_page | 92 |
container_title | IEEE journal of oceanic engineering |
container_volume | 45 |
creator | Michalopoulou, Zoi-Heleni Gerstoft, Peter |
description | Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surface reflection, bottom reflection, and sediment reflection. Accurate estimation of arrival times of such paths is tightly related to successful inversion for source location and water column depth and sound speed and, subsequently, estimation of sediment sound speed and thickness. To achieve accurate estimation, particle filtering is applied to the received time series at 16 phones combined with a simple cross-correlation method. Using linearization, arrival time probability density functions are connected to the geometry and water column sound-speed parameters, providing point estimates as well as probability densities. These are then employed in sediment sound speed and thickness estimation. The results, obtained from the application of the method to data collected during the Seabed Characterization Experiment, are consistent with prior information on the site. |
doi_str_mv | 10.1109/JOE.2019.2896681 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2339384726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8669831</ieee_id><sourcerecordid>2339384726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpuA26bem3lkZmm1aqXShboeJvPAlDapk6lQf70pLa7u4nznXPgIuUYYI4K6e11MxwWgGhdSCSHxhAyQc5mjUHhKBkAFyxVwdU4uum4JgIyVakAe37arVG9M-somsTWuMo3L5q01q_rXpLptRtmkD3drn-JulO3Td-_qtW9SNmt-fOx65pKcBbPq_NXxDsnn0_Tj4SWfL55nD_fz3DJgKee-QiGtKqQEx4WD0qFA4AhIAxaWeXAsMGtZJUJZ9aiveLBGAAsKKkmH5Pawu4nt99Z3SS_bbWz6l7qgVFHJykL0FBwoG9uuiz7oTazXJu40gt670r0rvXelj676ys2hUnvv_3EphJIU6R-eA2SN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339384726</pqid></control><display><type>article</type><title>Multipath Broadband Localization, Bathymetry, and Sediment Inversion</title><source>IEEE Xplore (Online service)</source><creator>Michalopoulou, Zoi-Heleni ; Gerstoft, Peter</creator><creatorcontrib>Michalopoulou, Zoi-Heleni ; Gerstoft, Peter</creatorcontrib><description>Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surface reflection, bottom reflection, and sediment reflection. Accurate estimation of arrival times of such paths is tightly related to successful inversion for source location and water column depth and sound speed and, subsequently, estimation of sediment sound speed and thickness. To achieve accurate estimation, particle filtering is applied to the received time series at 16 phones combined with a simple cross-correlation method. Using linearization, arrival time probability density functions are connected to the geometry and water column sound-speed parameters, providing point estimates as well as probability densities. These are then employed in sediment sound speed and thickness estimation. The results, obtained from the application of the method to data collected during the Seabed Characterization Experiment, are consistent with prior information on the site.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2019.2896681</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bathymeters ; Bathymetry ; Broadband ; Estimation ; Geoacoustic inversion ; Impulse response ; Jacobian matrices ; linearization ; Ocean floor ; Parameter estimation ; particle filter ; Probability density function ; Probability density functions ; Probability theory ; Receivers ; Reflection ; Sea measurements ; Sediment ; Sediments ; Sound ; Sound velocity ; Thickness ; Water circulation ; Water column ; Water depth ; Water resources</subject><ispartof>IEEE journal of oceanic engineering, 2020-01, Vol.45 (1), p.92-102</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83</citedby><cites>FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83</cites><orcidid>0000-0001-8153-7851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8669831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Michalopoulou, Zoi-Heleni</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><title>Multipath Broadband Localization, Bathymetry, and Sediment Inversion</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surface reflection, bottom reflection, and sediment reflection. Accurate estimation of arrival times of such paths is tightly related to successful inversion for source location and water column depth and sound speed and, subsequently, estimation of sediment sound speed and thickness. To achieve accurate estimation, particle filtering is applied to the received time series at 16 phones combined with a simple cross-correlation method. Using linearization, arrival time probability density functions are connected to the geometry and water column sound-speed parameters, providing point estimates as well as probability densities. These are then employed in sediment sound speed and thickness estimation. The results, obtained from the application of the method to data collected during the Seabed Characterization Experiment, are consistent with prior information on the site.</description><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>Broadband</subject><subject>Estimation</subject><subject>Geoacoustic inversion</subject><subject>Impulse response</subject><subject>Jacobian matrices</subject><subject>linearization</subject><subject>Ocean floor</subject><subject>Parameter estimation</subject><subject>particle filter</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Receivers</subject><subject>Reflection</subject><subject>Sea measurements</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Sound</subject><subject>Sound velocity</subject><subject>Thickness</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water depth</subject><subject>Water resources</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb3gpuA26bem3lkZmm1aqXShboeJvPAlDapk6lQf70pLa7u4nznXPgIuUYYI4K6e11MxwWgGhdSCSHxhAyQc5mjUHhKBkAFyxVwdU4uum4JgIyVakAe37arVG9M-somsTWuMo3L5q01q_rXpLptRtmkD3drn-JulO3Td-_qtW9SNmt-fOx65pKcBbPq_NXxDsnn0_Tj4SWfL55nD_fz3DJgKee-QiGtKqQEx4WD0qFA4AhIAxaWeXAsMGtZJUJZ9aiveLBGAAsKKkmH5Pawu4nt99Z3SS_bbWz6l7qgVFHJykL0FBwoG9uuiz7oTazXJu40gt670r0rvXelj676ys2hUnvv_3EphJIU6R-eA2SN</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Michalopoulou, Zoi-Heleni</creator><creator>Gerstoft, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8153-7851</orcidid></search><sort><creationdate>202001</creationdate><title>Multipath Broadband Localization, Bathymetry, and Sediment Inversion</title><author>Michalopoulou, Zoi-Heleni ; Gerstoft, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>Broadband</topic><topic>Estimation</topic><topic>Geoacoustic inversion</topic><topic>Impulse response</topic><topic>Jacobian matrices</topic><topic>linearization</topic><topic>Ocean floor</topic><topic>Parameter estimation</topic><topic>particle filter</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Receivers</topic><topic>Reflection</topic><topic>Sea measurements</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Sound</topic><topic>Sound velocity</topic><topic>Thickness</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water depth</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalopoulou, Zoi-Heleni</creatorcontrib><creatorcontrib>Gerstoft, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalopoulou, Zoi-Heleni</au><au>Gerstoft, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipath Broadband Localization, Bathymetry, and Sediment Inversion</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2020-01</date><risdate>2020</risdate><volume>45</volume><issue>1</issue><spage>92</spage><epage>102</epage><pages>92-102</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>Transmission of linearly frequency modulated pulses generates receptions at a vertical line array that can be cross correlated with the source signal to provide estimates of the oceanic waveguide impulse response. For short ranges, distinct path arrivals can be identified including the direct, surface reflection, bottom reflection, and sediment reflection. Accurate estimation of arrival times of such paths is tightly related to successful inversion for source location and water column depth and sound speed and, subsequently, estimation of sediment sound speed and thickness. To achieve accurate estimation, particle filtering is applied to the received time series at 16 phones combined with a simple cross-correlation method. Using linearization, arrival time probability density functions are connected to the geometry and water column sound-speed parameters, providing point estimates as well as probability densities. These are then employed in sediment sound speed and thickness estimation. The results, obtained from the application of the method to data collected during the Seabed Characterization Experiment, are consistent with prior information on the site.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2019.2896681</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8153-7851</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9059 |
ispartof | IEEE journal of oceanic engineering, 2020-01, Vol.45 (1), p.92-102 |
issn | 0364-9059 1558-1691 |
language | eng |
recordid | cdi_proquest_journals_2339384726 |
source | IEEE Xplore (Online service) |
subjects | Bathymeters Bathymetry Broadband Estimation Geoacoustic inversion Impulse response Jacobian matrices linearization Ocean floor Parameter estimation particle filter Probability density function Probability density functions Probability theory Receivers Reflection Sea measurements Sediment Sediments Sound Sound velocity Thickness Water circulation Water column Water depth Water resources |
title | Multipath Broadband Localization, Bathymetry, and Sediment Inversion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipath%20Broadband%20Localization,%20Bathymetry,%20and%20Sediment%20Inversion&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Michalopoulou,%20Zoi-Heleni&rft.date=2020-01&rft.volume=45&rft.issue=1&rft.spage=92&rft.epage=102&rft.pages=92-102&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2019.2896681&rft_dat=%3Cproquest_cross%3E2339384726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-5eb168c92880d56d07d161051013f12c4e0d4f4cc4b6f7b68ceb5fca604f90b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2339384726&rft_id=info:pmid/&rft_ieee_id=8669831&rfr_iscdi=true |