Loading…

Stability of a general adaptive immunity virus dynamics model with multistages of infected cells and two routes of infection

This paper studies an (n+4)‐dimensional nonlinear virus dynamics model that characterizes the interactions of the viruses, susceptible host cells, n‐stages of infected cells, B cells and cytotoxic T lymphocyte (CTL) cells. Both viral and cellular infections have been incorporated into the model. The...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2020-02, Vol.43 (3), p.1145-1175
Main Authors: Elaiw, Ahmed, AlShamrani, Noura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2933-e1e2abd80f39ce8781b73176caf9edca55b23a655db6a838434b53455928a6523
cites cdi_FETCH-LOGICAL-c2933-e1e2abd80f39ce8781b73176caf9edca55b23a655db6a838434b53455928a6523
container_end_page 1175
container_issue 3
container_start_page 1145
container_title Mathematical methods in the applied sciences
container_volume 43
creator Elaiw, Ahmed
AlShamrani, Noura
description This paper studies an (n+4)‐dimensional nonlinear virus dynamics model that characterizes the interactions of the viruses, susceptible host cells, n‐stages of infected cells, B cells and cytotoxic T lymphocyte (CTL) cells. Both viral and cellular infections have been incorporated into the model. The infected‐susceptible and virus‐susceptible infection rates as well as the generation and removal rates of all compartments are described by general nonlinear functions. Five threshold parameters are computed, which insure the existence of the equilibria of the model under consideration. A set of conditions on the general functions has been established, which is sufficient to investigate the global dynamics of the model. The global asymptotic stability of all equilibria is proven by utilizing Lyapunov function and LaSalle's invariance principle. The theoretical results are illustrated by numerical simulations of the model with specific forms of the general functions.
doi_str_mv 10.1002/mma.5923
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2340172150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340172150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-e1e2abd80f39ce8781b73176caf9edca55b23a655db6a838434b53455928a6523</originalsourceid><addsrcrecordid>eNp10E1LwzAYwPEgCs4p-BECXrx05qVZ2-MYvsGGB_Uc0iSdGUkzk3Sj4Ie3dR68eAo8-fE88AfgGqMZRojcOSdmrCL0BEwwqqoM58X8FEwQLlCWE5yfg4sYtwihEmMyAV-vSdTGmtRD30ABN7rVQVgolNgls9fQONe14_fehC5C1bfCGRmh80pbeDDpA7rOJhOT2Og4LjFto2XSCkptbYSiVTAdPAy-S3-B8e0lOGuEjfrq952C94f7t-VTtnp5fF4uVpkkFaWZxpqIWpWooZXUZVHiuqC4mEvRVFpJwVhNqJgzpuq5KGmZ07xmNGdDhnIYEzoFN8e9u-A_Ox0T3_outMNJTmg-pCGYoUHdHpUMPsagG74LxonQc4z42JYPbfnYdqDZkR6M1f2_jq_Xix__Da4YfDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2340172150</pqid></control><display><type>article</type><title>Stability of a general adaptive immunity virus dynamics model with multistages of infected cells and two routes of infection</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Elaiw, Ahmed ; AlShamrani, Noura</creator><creatorcontrib>Elaiw, Ahmed ; AlShamrani, Noura</creatorcontrib><description>This paper studies an (n+4)‐dimensional nonlinear virus dynamics model that characterizes the interactions of the viruses, susceptible host cells, n‐stages of infected cells, B cells and cytotoxic T lymphocyte (CTL) cells. Both viral and cellular infections have been incorporated into the model. The infected‐susceptible and virus‐susceptible infection rates as well as the generation and removal rates of all compartments are described by general nonlinear functions. Five threshold parameters are computed, which insure the existence of the equilibria of the model under consideration. A set of conditions on the general functions has been established, which is sufficient to investigate the global dynamics of the model. The global asymptotic stability of all equilibria is proven by utilizing Lyapunov function and LaSalle's invariance principle. The theoretical results are illustrated by numerical simulations of the model with specific forms of the general functions.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5923</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>adaptive immune response ; Computer simulation ; Dynamic stability ; Economic models ; global stability ; Liapunov functions ; Lyapunov function ; Lymphocytes ; Mathematical models ; multistaged infected cells ; Nonlinear dynamics ; viral and cellular infections ; Viruses</subject><ispartof>Mathematical methods in the applied sciences, 2020-02, Vol.43 (3), p.1145-1175</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-e1e2abd80f39ce8781b73176caf9edca55b23a655db6a838434b53455928a6523</citedby><cites>FETCH-LOGICAL-c2933-e1e2abd80f39ce8781b73176caf9edca55b23a655db6a838434b53455928a6523</cites><orcidid>0000-0001-5030-633X ; 0000-0002-6324-2774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Elaiw, Ahmed</creatorcontrib><creatorcontrib>AlShamrani, Noura</creatorcontrib><title>Stability of a general adaptive immunity virus dynamics model with multistages of infected cells and two routes of infection</title><title>Mathematical methods in the applied sciences</title><description>This paper studies an (n+4)‐dimensional nonlinear virus dynamics model that characterizes the interactions of the viruses, susceptible host cells, n‐stages of infected cells, B cells and cytotoxic T lymphocyte (CTL) cells. Both viral and cellular infections have been incorporated into the model. The infected‐susceptible and virus‐susceptible infection rates as well as the generation and removal rates of all compartments are described by general nonlinear functions. Five threshold parameters are computed, which insure the existence of the equilibria of the model under consideration. A set of conditions on the general functions has been established, which is sufficient to investigate the global dynamics of the model. The global asymptotic stability of all equilibria is proven by utilizing Lyapunov function and LaSalle's invariance principle. The theoretical results are illustrated by numerical simulations of the model with specific forms of the general functions.</description><subject>adaptive immune response</subject><subject>Computer simulation</subject><subject>Dynamic stability</subject><subject>Economic models</subject><subject>global stability</subject><subject>Liapunov functions</subject><subject>Lyapunov function</subject><subject>Lymphocytes</subject><subject>Mathematical models</subject><subject>multistaged infected cells</subject><subject>Nonlinear dynamics</subject><subject>viral and cellular infections</subject><subject>Viruses</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYwPEgCs4p-BECXrx05qVZ2-MYvsGGB_Uc0iSdGUkzk3Sj4Ie3dR68eAo8-fE88AfgGqMZRojcOSdmrCL0BEwwqqoM58X8FEwQLlCWE5yfg4sYtwihEmMyAV-vSdTGmtRD30ABN7rVQVgolNgls9fQONe14_fehC5C1bfCGRmh80pbeDDpA7rOJhOT2Og4LjFto2XSCkptbYSiVTAdPAy-S3-B8e0lOGuEjfrq952C94f7t-VTtnp5fF4uVpkkFaWZxpqIWpWooZXUZVHiuqC4mEvRVFpJwVhNqJgzpuq5KGmZ07xmNGdDhnIYEzoFN8e9u-A_Ox0T3_outMNJTmg-pCGYoUHdHpUMPsagG74LxonQc4z42JYPbfnYdqDZkR6M1f2_jq_Xix__Da4YfDQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Elaiw, Ahmed</creator><creator>AlShamrani, Noura</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5030-633X</orcidid><orcidid>https://orcid.org/0000-0002-6324-2774</orcidid></search><sort><creationdate>202002</creationdate><title>Stability of a general adaptive immunity virus dynamics model with multistages of infected cells and two routes of infection</title><author>Elaiw, Ahmed ; AlShamrani, Noura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-e1e2abd80f39ce8781b73176caf9edca55b23a655db6a838434b53455928a6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive immune response</topic><topic>Computer simulation</topic><topic>Dynamic stability</topic><topic>Economic models</topic><topic>global stability</topic><topic>Liapunov functions</topic><topic>Lyapunov function</topic><topic>Lymphocytes</topic><topic>Mathematical models</topic><topic>multistaged infected cells</topic><topic>Nonlinear dynamics</topic><topic>viral and cellular infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elaiw, Ahmed</creatorcontrib><creatorcontrib>AlShamrani, Noura</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elaiw, Ahmed</au><au>AlShamrani, Noura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of a general adaptive immunity virus dynamics model with multistages of infected cells and two routes of infection</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-02</date><risdate>2020</risdate><volume>43</volume><issue>3</issue><spage>1145</spage><epage>1175</epage><pages>1145-1175</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper studies an (n+4)‐dimensional nonlinear virus dynamics model that characterizes the interactions of the viruses, susceptible host cells, n‐stages of infected cells, B cells and cytotoxic T lymphocyte (CTL) cells. Both viral and cellular infections have been incorporated into the model. The infected‐susceptible and virus‐susceptible infection rates as well as the generation and removal rates of all compartments are described by general nonlinear functions. Five threshold parameters are computed, which insure the existence of the equilibria of the model under consideration. A set of conditions on the general functions has been established, which is sufficient to investigate the global dynamics of the model. The global asymptotic stability of all equilibria is proven by utilizing Lyapunov function and LaSalle's invariance principle. The theoretical results are illustrated by numerical simulations of the model with specific forms of the general functions.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5923</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-5030-633X</orcidid><orcidid>https://orcid.org/0000-0002-6324-2774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-02, Vol.43 (3), p.1145-1175
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2340172150
source Wiley-Blackwell Read & Publish Collection
subjects adaptive immune response
Computer simulation
Dynamic stability
Economic models
global stability
Liapunov functions
Lyapunov function
Lymphocytes
Mathematical models
multistaged infected cells
Nonlinear dynamics
viral and cellular infections
Viruses
title Stability of a general adaptive immunity virus dynamics model with multistages of infected cells and two routes of infection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20a%20general%20adaptive%20immunity%20virus%20dynamics%20model%20with%20multistages%20of%20infected%20cells%20and%20two%20routes%20of%20infection&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Elaiw,%20Ahmed&rft.date=2020-02&rft.volume=43&rft.issue=3&rft.spage=1145&rft.epage=1175&rft.pages=1145-1175&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5923&rft_dat=%3Cproquest_cross%3E2340172150%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2933-e1e2abd80f39ce8781b73176caf9edca55b23a655db6a838434b53455928a6523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2340172150&rft_id=info:pmid/&rfr_iscdi=true