Loading…

Jigsaw puzzle design of pluripotent origami

Origami is rapidly transforming the design of robots 1 , 2 , deployable structures 3 – 6 and metamaterials 7 – 14 . However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer o...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2020-01, Vol.16 (1), p.63-68
Main Authors: Dieleman, Peter, Vasmel, Niek, Waitukaitis, Scott, van Hecke, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-315828b34add0829974405f36f487d9c7bd31eff4b34910a1a74561aa265589c3
cites cdi_FETCH-LOGICAL-c316t-315828b34add0829974405f36f487d9c7bd31eff4b34910a1a74561aa265589c3
container_end_page 68
container_issue 1
container_start_page 63
container_title Nature physics
container_volume 16
creator Dieleman, Peter
Vasmel, Niek
Waitukaitis, Scott
van Hecke, Martin
description Origami is rapidly transforming the design of robots 1 , 2 , deployable structures 3 – 6 and metamaterials 7 – 14 . However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer optimization. Here we introduce a systematic strategy that enables intuitive and effective design of complex crease patterns that are guaranteed to fold. First, we exploit symmetries to construct 140 distinct foldable motifs, and represent these as jigsaw puzzle pieces. We then show that when these pieces are fitted together they encode foldable crease patterns. This maps origami design to solving combinatorial problems, which allows us to systematically create, count and classify a vast number of crease patterns. We show that all of these crease patterns are pluripotent—capable of folding into multiple shapes—and solve exactly for the number of possible shapes for each pattern. Finally, we employ our framework to rationally design a crease pattern that folds into two independently defined target shapes, and fabricate such pluripotent origami. Our results provide physicists, mathematicians and engineers with a powerful new design strategy. The crease patterns for origami-based mechanical metamaterials can fold into myriad 3D shapes, but predicting foldability is no simple task. A framework for designing foldable patterns offers a neat alternative to extensive computer optimization.
doi_str_mv 10.1038/s41567-019-0677-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2342388244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342388244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-315828b34add0829974405f36f487d9c7bd31eff4b34910a1a74561aa265589c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FjxLNZNIkPcriJwte9ByybVK6dNuatIj7681S0ZOnmcPzvjM8hFwCuwGG-jYKyKWiDArKpFIUj8gClMgpFxqOf3eFp-Qsxi1jgkvABbl-aepoP7Nh2u9bl1UuNnWX9T4b2ik0Qz-6bsz60NR215yTE2_b6C5-5pK8P9y_rZ7o-vXxeXW3piWCHClCrrneoLBVxTQvCiUEyz1KL7SqilJtKgTnvUhIAcyCTb9JsJbLPNdFiUtyNfcOof-YXBzNtp9Cl04ajoKj1lyIRMFMlaGPMThvhtDsbPgywMzBiZmdmOTEHJwYTBk-Z2Jiu9qFv-b_Q99FmmIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342388244</pqid></control><display><type>article</type><title>Jigsaw puzzle design of pluripotent origami</title><source>Nature</source><creator>Dieleman, Peter ; Vasmel, Niek ; Waitukaitis, Scott ; van Hecke, Martin</creator><creatorcontrib>Dieleman, Peter ; Vasmel, Niek ; Waitukaitis, Scott ; van Hecke, Martin</creatorcontrib><description>Origami is rapidly transforming the design of robots 1 , 2 , deployable structures 3 – 6 and metamaterials 7 – 14 . However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer optimization. Here we introduce a systematic strategy that enables intuitive and effective design of complex crease patterns that are guaranteed to fold. First, we exploit symmetries to construct 140 distinct foldable motifs, and represent these as jigsaw puzzle pieces. We then show that when these pieces are fitted together they encode foldable crease patterns. This maps origami design to solving combinatorial problems, which allows us to systematically create, count and classify a vast number of crease patterns. We show that all of these crease patterns are pluripotent—capable of folding into multiple shapes—and solve exactly for the number of possible shapes for each pattern. Finally, we employ our framework to rationally design a crease pattern that folds into two independently defined target shapes, and fabricate such pluripotent origami. Our results provide physicists, mathematicians and engineers with a powerful new design strategy. The crease patterns for origami-based mechanical metamaterials can fold into myriad 3D shapes, but predicting foldability is no simple task. A framework for designing foldable patterns offers a neat alternative to extensive computer optimization.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0677-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/530/2801 ; 639/766/530/2803 ; Atomic ; Classical and Continuum Physics ; Combinatorial analysis ; Complex Systems ; Condensed Matter Physics ; Design ; Folding ; Jigsaw puzzles ; Letter ; Mathematical and Computational Physics ; Metamaterials ; Molecular ; Optical and Plasma Physics ; Optimization ; Origami ; Physics ; Physics and Astronomy ; Shape recognition ; Theoretical</subject><ispartof>Nature physics, 2020-01, Vol.16 (1), p.63-68</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-315828b34add0829974405f36f487d9c7bd31eff4b34910a1a74561aa265589c3</citedby><cites>FETCH-LOGICAL-c316t-315828b34add0829974405f36f487d9c7bd31eff4b34910a1a74561aa265589c3</cites><orcidid>0000-0002-2299-3176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dieleman, Peter</creatorcontrib><creatorcontrib>Vasmel, Niek</creatorcontrib><creatorcontrib>Waitukaitis, Scott</creatorcontrib><creatorcontrib>van Hecke, Martin</creatorcontrib><title>Jigsaw puzzle design of pluripotent origami</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Origami is rapidly transforming the design of robots 1 , 2 , deployable structures 3 – 6 and metamaterials 7 – 14 . However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer optimization. Here we introduce a systematic strategy that enables intuitive and effective design of complex crease patterns that are guaranteed to fold. First, we exploit symmetries to construct 140 distinct foldable motifs, and represent these as jigsaw puzzle pieces. We then show that when these pieces are fitted together they encode foldable crease patterns. This maps origami design to solving combinatorial problems, which allows us to systematically create, count and classify a vast number of crease patterns. We show that all of these crease patterns are pluripotent—capable of folding into multiple shapes—and solve exactly for the number of possible shapes for each pattern. Finally, we employ our framework to rationally design a crease pattern that folds into two independently defined target shapes, and fabricate such pluripotent origami. Our results provide physicists, mathematicians and engineers with a powerful new design strategy. The crease patterns for origami-based mechanical metamaterials can fold into myriad 3D shapes, but predicting foldability is no simple task. A framework for designing foldable patterns offers a neat alternative to extensive computer optimization.</description><subject>639/766/530/2801</subject><subject>639/766/530/2803</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Combinatorial analysis</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Design</subject><subject>Folding</subject><subject>Jigsaw puzzles</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Metamaterials</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Origami</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shape recognition</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8FjxLNZNIkPcriJwte9ByybVK6dNuatIj7681S0ZOnmcPzvjM8hFwCuwGG-jYKyKWiDArKpFIUj8gClMgpFxqOf3eFp-Qsxi1jgkvABbl-aepoP7Nh2u9bl1UuNnWX9T4b2ik0Qz-6bsz60NR215yTE2_b6C5-5pK8P9y_rZ7o-vXxeXW3piWCHClCrrneoLBVxTQvCiUEyz1KL7SqilJtKgTnvUhIAcyCTb9JsJbLPNdFiUtyNfcOof-YXBzNtp9Cl04ajoKj1lyIRMFMlaGPMThvhtDsbPgywMzBiZmdmOTEHJwYTBk-Z2Jiu9qFv-b_Q99FmmIl</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Dieleman, Peter</creator><creator>Vasmel, Niek</creator><creator>Waitukaitis, Scott</creator><creator>van Hecke, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2299-3176</orcidid></search><sort><creationdate>20200101</creationdate><title>Jigsaw puzzle design of pluripotent origami</title><author>Dieleman, Peter ; Vasmel, Niek ; Waitukaitis, Scott ; van Hecke, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-315828b34add0829974405f36f487d9c7bd31eff4b34910a1a74561aa265589c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/530/2801</topic><topic>639/766/530/2803</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Combinatorial analysis</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Design</topic><topic>Folding</topic><topic>Jigsaw puzzles</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Metamaterials</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Origami</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shape recognition</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieleman, Peter</creatorcontrib><creatorcontrib>Vasmel, Niek</creatorcontrib><creatorcontrib>Waitukaitis, Scott</creatorcontrib><creatorcontrib>van Hecke, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieleman, Peter</au><au>Vasmel, Niek</au><au>Waitukaitis, Scott</au><au>van Hecke, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jigsaw puzzle design of pluripotent origami</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>63</spage><epage>68</epage><pages>63-68</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Origami is rapidly transforming the design of robots 1 , 2 , deployable structures 3 – 6 and metamaterials 7 – 14 . However, as foldability requires a large number of complex compatibility conditions that are difficult to satisfy, the design of crease patterns is limited to heuristics and computer optimization. Here we introduce a systematic strategy that enables intuitive and effective design of complex crease patterns that are guaranteed to fold. First, we exploit symmetries to construct 140 distinct foldable motifs, and represent these as jigsaw puzzle pieces. We then show that when these pieces are fitted together they encode foldable crease patterns. This maps origami design to solving combinatorial problems, which allows us to systematically create, count and classify a vast number of crease patterns. We show that all of these crease patterns are pluripotent—capable of folding into multiple shapes—and solve exactly for the number of possible shapes for each pattern. Finally, we employ our framework to rationally design a crease pattern that folds into two independently defined target shapes, and fabricate such pluripotent origami. Our results provide physicists, mathematicians and engineers with a powerful new design strategy. The crease patterns for origami-based mechanical metamaterials can fold into myriad 3D shapes, but predicting foldability is no simple task. A framework for designing foldable patterns offers a neat alternative to extensive computer optimization.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0677-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2299-3176</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-01, Vol.16 (1), p.63-68
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2342388244
source Nature
subjects 639/766/530/2801
639/766/530/2803
Atomic
Classical and Continuum Physics
Combinatorial analysis
Complex Systems
Condensed Matter Physics
Design
Folding
Jigsaw puzzles
Letter
Mathematical and Computational Physics
Metamaterials
Molecular
Optical and Plasma Physics
Optimization
Origami
Physics
Physics and Astronomy
Shape recognition
Theoretical
title Jigsaw puzzle design of pluripotent origami
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jigsaw%20puzzle%20design%20of%20pluripotent%20origami&rft.jtitle=Nature%20physics&rft.au=Dieleman,%20Peter&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=63&rft.epage=68&rft.pages=63-68&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0677-3&rft_dat=%3Cproquest_cross%3E2342388244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-315828b34add0829974405f36f487d9c7bd31eff4b34910a1a74561aa265589c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2342388244&rft_id=info:pmid/&rfr_iscdi=true