Loading…

Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator

Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electron...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2020-01, Vol.16 (1), p.47-51
Main Authors: Stühler, R., Reis, F., Müller, T., Helbig, T., Schwemmer, T., Thomale, R., Schäfer, J., Claessen, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73
cites cdi_FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73
container_end_page 51
container_issue 1
container_start_page 47
container_title Nature physics
container_volume 16
creator Stühler, R.
Reis, F.
Müller, T.
Helbig, T.
Schwemmer, T.
Thomale, R.
Schäfer, J.
Claessen, R.
description Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electronics and computation. However, the effect of the interelectronic Coulomb repulsion also has to be taken into account, as two-particle scattering is not impeded by topological protection and may strongly affect the edge state conductance. Here, we explore the impact of electronic correlations on highly localized edge states of the unique quantum spin Hall material bismuthene on SiC(0001) (ref.  1 ). Exploiting the advantage of having an accessible monolayer substrate system, we use STM/STS to visualize the close-to-perfect one-dimensional confinement of the edge channels and scrutinize their suppressed density of states at the Fermi level. On the basis of the observed spectral behaviour and its universal scaling with energy and temperature, we demonstrate the correspondence with a (helical) Tomonaga–Luttinger liquid. In particular, the extracted interaction parameter K is directly relevant to the fundamental question of the temperatures at which the quantized conductance (a hallmark of quantum spin Hall materials) will become obscured by correlations 2 . Scanning tunnelling microscopy and spectroscopy study of the conductive edge state in a two-dimensional topological insulator reveals the interplay of topology and electronic correlations.
doi_str_mv 10.1038/s41567-019-0697-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2342957519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342957519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73</originalsourceid><addsrcrecordid>eNp1kM1Kw0AURgdRsFYfwN2A6-j8T2YpRa1QEKGuh5tk0qakSTuTWdiV7-Ab-iROiejK1b1wz_ddOAhdU3JLCc_vgqBS6YxQkxFldHY4QROqhcyYyOnp7675OboIYUOIYIryCXpd9tu-gxV8fXwu4jA03cp53Db72FS46fCwdthVK4fLNXSdawPuawx4H6Eb4haHXWLm0LaJDbGFofeX6KyGNrirnzlFb48Py9k8W7w8Pc_uF1nJczZkXDJmeEWg1JKUglYCVA2mFo6wwpVOVDkDYUi6cKkU6ErpGgpVgJCmKjSfopuxd-f7fXRhsJs--i69tIwLZqSW1CSKjlTp-xC8q-3ON1vw75YSezRnR3M2mbNHc_aQMmzMhMQeffw1_x_6BjjrcuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342957519</pqid></control><display><type>article</type><title>Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator</title><source>Nature</source><creator>Stühler, R. ; Reis, F. ; Müller, T. ; Helbig, T. ; Schwemmer, T. ; Thomale, R. ; Schäfer, J. ; Claessen, R.</creator><creatorcontrib>Stühler, R. ; Reis, F. ; Müller, T. ; Helbig, T. ; Schwemmer, T. ; Thomale, R. ; Schäfer, J. ; Claessen, R.</creatorcontrib><description>Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electronics and computation. However, the effect of the interelectronic Coulomb repulsion also has to be taken into account, as two-particle scattering is not impeded by topological protection and may strongly affect the edge state conductance. Here, we explore the impact of electronic correlations on highly localized edge states of the unique quantum spin Hall material bismuthene on SiC(0001) (ref.  1 ). Exploiting the advantage of having an accessible monolayer substrate system, we use STM/STS to visualize the close-to-perfect one-dimensional confinement of the edge channels and scrutinize their suppressed density of states at the Fermi level. On the basis of the observed spectral behaviour and its universal scaling with energy and temperature, we demonstrate the correspondence with a (helical) Tomonaga–Luttinger liquid. In particular, the extracted interaction parameter K is directly relevant to the fundamental question of the temperatures at which the quantized conductance (a hallmark of quantum spin Hall materials) will become obscured by correlations 2 . Scanning tunnelling microscopy and spectroscopy study of the conductive edge state in a two-dimensional topological insulator reveals the interplay of topology and electronic correlations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0697-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000/1018 ; 639/766/119/2792/4128 ; 639/766/119/995 ; Atomic ; Backscattering ; Channels ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Electron spin ; Electron states ; Energy ; Interaction parameters ; Letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Particle spin ; Physics ; Physics and Astronomy ; Resistance ; Spectrum analysis ; Substrates ; Theoretical ; Topography ; Topological insulators ; Topology ; Two dimensional materials</subject><ispartof>Nature physics, 2020-01, Vol.16 (1), p.47-51</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73</citedby><cites>FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73</cites><orcidid>0000-0002-4218-2477 ; 0000-0001-6942-2568 ; 0000-0002-0615-2211 ; 0000-0002-3979-8836 ; 0000-0003-3682-6325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stühler, R.</creatorcontrib><creatorcontrib>Reis, F.</creatorcontrib><creatorcontrib>Müller, T.</creatorcontrib><creatorcontrib>Helbig, T.</creatorcontrib><creatorcontrib>Schwemmer, T.</creatorcontrib><creatorcontrib>Thomale, R.</creatorcontrib><creatorcontrib>Schäfer, J.</creatorcontrib><creatorcontrib>Claessen, R.</creatorcontrib><title>Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electronics and computation. However, the effect of the interelectronic Coulomb repulsion also has to be taken into account, as two-particle scattering is not impeded by topological protection and may strongly affect the edge state conductance. Here, we explore the impact of electronic correlations on highly localized edge states of the unique quantum spin Hall material bismuthene on SiC(0001) (ref.  1 ). Exploiting the advantage of having an accessible monolayer substrate system, we use STM/STS to visualize the close-to-perfect one-dimensional confinement of the edge channels and scrutinize their suppressed density of states at the Fermi level. On the basis of the observed spectral behaviour and its universal scaling with energy and temperature, we demonstrate the correspondence with a (helical) Tomonaga–Luttinger liquid. In particular, the extracted interaction parameter K is directly relevant to the fundamental question of the temperatures at which the quantized conductance (a hallmark of quantum spin Hall materials) will become obscured by correlations 2 . Scanning tunnelling microscopy and spectroscopy study of the conductive edge state in a two-dimensional topological insulator reveals the interplay of topology and electronic correlations.</description><subject>639/766/119/1000/1018</subject><subject>639/766/119/2792/4128</subject><subject>639/766/119/995</subject><subject>Atomic</subject><subject>Backscattering</subject><subject>Channels</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electron spin</subject><subject>Electron states</subject><subject>Energy</subject><subject>Interaction parameters</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle spin</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Resistance</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Theoretical</subject><subject>Topography</subject><subject>Topological insulators</subject><subject>Topology</subject><subject>Two dimensional materials</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AURgdRsFYfwN2A6-j8T2YpRa1QEKGuh5tk0qakSTuTWdiV7-Ab-iROiejK1b1wz_ddOAhdU3JLCc_vgqBS6YxQkxFldHY4QROqhcyYyOnp7675OboIYUOIYIryCXpd9tu-gxV8fXwu4jA03cp53Db72FS46fCwdthVK4fLNXSdawPuawx4H6Eb4haHXWLm0LaJDbGFofeX6KyGNrirnzlFb48Py9k8W7w8Pc_uF1nJczZkXDJmeEWg1JKUglYCVA2mFo6wwpVOVDkDYUi6cKkU6ErpGgpVgJCmKjSfopuxd-f7fXRhsJs--i69tIwLZqSW1CSKjlTp-xC8q-3ON1vw75YSezRnR3M2mbNHc_aQMmzMhMQeffw1_x_6BjjrcuU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Stühler, R.</creator><creator>Reis, F.</creator><creator>Müller, T.</creator><creator>Helbig, T.</creator><creator>Schwemmer, T.</creator><creator>Thomale, R.</creator><creator>Schäfer, J.</creator><creator>Claessen, R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4218-2477</orcidid><orcidid>https://orcid.org/0000-0001-6942-2568</orcidid><orcidid>https://orcid.org/0000-0002-0615-2211</orcidid><orcidid>https://orcid.org/0000-0002-3979-8836</orcidid><orcidid>https://orcid.org/0000-0003-3682-6325</orcidid></search><sort><creationdate>20200101</creationdate><title>Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator</title><author>Stühler, R. ; Reis, F. ; Müller, T. ; Helbig, T. ; Schwemmer, T. ; Thomale, R. ; Schäfer, J. ; Claessen, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/1000/1018</topic><topic>639/766/119/2792/4128</topic><topic>639/766/119/995</topic><topic>Atomic</topic><topic>Backscattering</topic><topic>Channels</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electron spin</topic><topic>Electron states</topic><topic>Energy</topic><topic>Interaction parameters</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle spin</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Resistance</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Theoretical</topic><topic>Topography</topic><topic>Topological insulators</topic><topic>Topology</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stühler, R.</creatorcontrib><creatorcontrib>Reis, F.</creatorcontrib><creatorcontrib>Müller, T.</creatorcontrib><creatorcontrib>Helbig, T.</creatorcontrib><creatorcontrib>Schwemmer, T.</creatorcontrib><creatorcontrib>Thomale, R.</creatorcontrib><creatorcontrib>Schäfer, J.</creatorcontrib><creatorcontrib>Claessen, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stühler, R.</au><au>Reis, F.</au><au>Müller, T.</au><au>Helbig, T.</au><au>Schwemmer, T.</au><au>Thomale, R.</au><au>Schäfer, J.</au><au>Claessen, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>47</spage><epage>51</epage><pages>47-51</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electronics and computation. However, the effect of the interelectronic Coulomb repulsion also has to be taken into account, as two-particle scattering is not impeded by topological protection and may strongly affect the edge state conductance. Here, we explore the impact of electronic correlations on highly localized edge states of the unique quantum spin Hall material bismuthene on SiC(0001) (ref.  1 ). Exploiting the advantage of having an accessible monolayer substrate system, we use STM/STS to visualize the close-to-perfect one-dimensional confinement of the edge channels and scrutinize their suppressed density of states at the Fermi level. On the basis of the observed spectral behaviour and its universal scaling with energy and temperature, we demonstrate the correspondence with a (helical) Tomonaga–Luttinger liquid. In particular, the extracted interaction parameter K is directly relevant to the fundamental question of the temperatures at which the quantized conductance (a hallmark of quantum spin Hall materials) will become obscured by correlations 2 . Scanning tunnelling microscopy and spectroscopy study of the conductive edge state in a two-dimensional topological insulator reveals the interplay of topology and electronic correlations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0697-z</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4218-2477</orcidid><orcidid>https://orcid.org/0000-0001-6942-2568</orcidid><orcidid>https://orcid.org/0000-0002-0615-2211</orcidid><orcidid>https://orcid.org/0000-0002-3979-8836</orcidid><orcidid>https://orcid.org/0000-0003-3682-6325</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-01, Vol.16 (1), p.47-51
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2342957519
source Nature
subjects 639/766/119/1000/1018
639/766/119/2792/4128
639/766/119/995
Atomic
Backscattering
Channels
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Electron spin
Electron states
Energy
Interaction parameters
Letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Particle spin
Physics
Physics and Astronomy
Resistance
Spectrum analysis
Substrates
Theoretical
Topography
Topological insulators
Topology
Two dimensional materials
title Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tomonaga%E2%80%93Luttinger%20liquid%20in%20the%20edge%20channels%20of%20a%20quantum%20spin%20Hall%20insulator&rft.jtitle=Nature%20physics&rft.au=St%C3%BChler,%20R.&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=47&rft.epage=51&rft.pages=47-51&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0697-z&rft_dat=%3Cproquest_cross%3E2342957519%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2342957519&rft_id=info:pmid/&rfr_iscdi=true