Loading…
Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator
Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electron...
Saved in:
Published in: | Nature physics 2020-01, Vol.16 (1), p.47-51 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73 |
container_end_page | 51 |
container_issue | 1 |
container_start_page | 47 |
container_title | Nature physics |
container_volume | 16 |
creator | Stühler, R. Reis, F. Müller, T. Helbig, T. Schwemmer, T. Thomale, R. Schäfer, J. Claessen, R. |
description | Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electronics and computation. However, the effect of the interelectronic Coulomb repulsion also has to be taken into account, as two-particle scattering is not impeded by topological protection and may strongly affect the edge state conductance. Here, we explore the impact of electronic correlations on highly localized edge states of the unique quantum spin Hall material bismuthene on SiC(0001) (ref.
1
). Exploiting the advantage of having an accessible monolayer substrate system, we use STM/STS to visualize the close-to-perfect one-dimensional confinement of the edge channels and scrutinize their suppressed density of states at the Fermi level. On the basis of the observed spectral behaviour and its universal scaling with energy and temperature, we demonstrate the correspondence with a (helical) Tomonaga–Luttinger liquid. In particular, the extracted interaction parameter
K
is directly relevant to the fundamental question of the temperatures at which the quantized conductance (a hallmark of quantum spin Hall materials) will become obscured by correlations
2
.
Scanning tunnelling microscopy and spectroscopy study of the conductive edge state in a two-dimensional topological insulator reveals the interplay of topology and electronic correlations. |
doi_str_mv | 10.1038/s41567-019-0697-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2342957519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342957519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73</originalsourceid><addsrcrecordid>eNp1kM1Kw0AURgdRsFYfwN2A6-j8T2YpRa1QEKGuh5tk0qakSTuTWdiV7-Ab-iROiejK1b1wz_ddOAhdU3JLCc_vgqBS6YxQkxFldHY4QROqhcyYyOnp7675OboIYUOIYIryCXpd9tu-gxV8fXwu4jA03cp53Db72FS46fCwdthVK4fLNXSdawPuawx4H6Eb4haHXWLm0LaJDbGFofeX6KyGNrirnzlFb48Py9k8W7w8Pc_uF1nJczZkXDJmeEWg1JKUglYCVA2mFo6wwpVOVDkDYUi6cKkU6ErpGgpVgJCmKjSfopuxd-f7fXRhsJs--i69tIwLZqSW1CSKjlTp-xC8q-3ON1vw75YSezRnR3M2mbNHc_aQMmzMhMQeffw1_x_6BjjrcuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342957519</pqid></control><display><type>article</type><title>Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator</title><source>Nature</source><creator>Stühler, R. ; Reis, F. ; Müller, T. ; Helbig, T. ; Schwemmer, T. ; Thomale, R. ; Schäfer, J. ; Claessen, R.</creator><creatorcontrib>Stühler, R. ; Reis, F. ; Müller, T. ; Helbig, T. ; Schwemmer, T. ; Thomale, R. ; Schäfer, J. ; Claessen, R.</creatorcontrib><description>Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electronics and computation. However, the effect of the interelectronic Coulomb repulsion also has to be taken into account, as two-particle scattering is not impeded by topological protection and may strongly affect the edge state conductance. Here, we explore the impact of electronic correlations on highly localized edge states of the unique quantum spin Hall material bismuthene on SiC(0001) (ref.
1
). Exploiting the advantage of having an accessible monolayer substrate system, we use STM/STS to visualize the close-to-perfect one-dimensional confinement of the edge channels and scrutinize their suppressed density of states at the Fermi level. On the basis of the observed spectral behaviour and its universal scaling with energy and temperature, we demonstrate the correspondence with a (helical) Tomonaga–Luttinger liquid. In particular, the extracted interaction parameter
K
is directly relevant to the fundamental question of the temperatures at which the quantized conductance (a hallmark of quantum spin Hall materials) will become obscured by correlations
2
.
Scanning tunnelling microscopy and spectroscopy study of the conductive edge state in a two-dimensional topological insulator reveals the interplay of topology and electronic correlations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0697-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000/1018 ; 639/766/119/2792/4128 ; 639/766/119/995 ; Atomic ; Backscattering ; Channels ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Electron spin ; Electron states ; Energy ; Interaction parameters ; Letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Particle spin ; Physics ; Physics and Astronomy ; Resistance ; Spectrum analysis ; Substrates ; Theoretical ; Topography ; Topological insulators ; Topology ; Two dimensional materials</subject><ispartof>Nature physics, 2020-01, Vol.16 (1), p.47-51</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73</citedby><cites>FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73</cites><orcidid>0000-0002-4218-2477 ; 0000-0001-6942-2568 ; 0000-0002-0615-2211 ; 0000-0002-3979-8836 ; 0000-0003-3682-6325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stühler, R.</creatorcontrib><creatorcontrib>Reis, F.</creatorcontrib><creatorcontrib>Müller, T.</creatorcontrib><creatorcontrib>Helbig, T.</creatorcontrib><creatorcontrib>Schwemmer, T.</creatorcontrib><creatorcontrib>Thomale, R.</creatorcontrib><creatorcontrib>Schäfer, J.</creatorcontrib><creatorcontrib>Claessen, R.</creatorcontrib><title>Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electronics and computation. However, the effect of the interelectronic Coulomb repulsion also has to be taken into account, as two-particle scattering is not impeded by topological protection and may strongly affect the edge state conductance. Here, we explore the impact of electronic correlations on highly localized edge states of the unique quantum spin Hall material bismuthene on SiC(0001) (ref.
1
). Exploiting the advantage of having an accessible monolayer substrate system, we use STM/STS to visualize the close-to-perfect one-dimensional confinement of the edge channels and scrutinize their suppressed density of states at the Fermi level. On the basis of the observed spectral behaviour and its universal scaling with energy and temperature, we demonstrate the correspondence with a (helical) Tomonaga–Luttinger liquid. In particular, the extracted interaction parameter
K
is directly relevant to the fundamental question of the temperatures at which the quantized conductance (a hallmark of quantum spin Hall materials) will become obscured by correlations
2
.
Scanning tunnelling microscopy and spectroscopy study of the conductive edge state in a two-dimensional topological insulator reveals the interplay of topology and electronic correlations.</description><subject>639/766/119/1000/1018</subject><subject>639/766/119/2792/4128</subject><subject>639/766/119/995</subject><subject>Atomic</subject><subject>Backscattering</subject><subject>Channels</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electron spin</subject><subject>Electron states</subject><subject>Energy</subject><subject>Interaction parameters</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle spin</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Resistance</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Theoretical</subject><subject>Topography</subject><subject>Topological insulators</subject><subject>Topology</subject><subject>Two dimensional materials</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AURgdRsFYfwN2A6-j8T2YpRa1QEKGuh5tk0qakSTuTWdiV7-Ab-iROiejK1b1wz_ddOAhdU3JLCc_vgqBS6YxQkxFldHY4QROqhcyYyOnp7675OboIYUOIYIryCXpd9tu-gxV8fXwu4jA03cp53Db72FS46fCwdthVK4fLNXSdawPuawx4H6Eb4haHXWLm0LaJDbGFofeX6KyGNrirnzlFb48Py9k8W7w8Pc_uF1nJczZkXDJmeEWg1JKUglYCVA2mFo6wwpVOVDkDYUi6cKkU6ErpGgpVgJCmKjSfopuxd-f7fXRhsJs--i69tIwLZqSW1CSKjlTp-xC8q-3ON1vw75YSezRnR3M2mbNHc_aQMmzMhMQeffw1_x_6BjjrcuU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Stühler, R.</creator><creator>Reis, F.</creator><creator>Müller, T.</creator><creator>Helbig, T.</creator><creator>Schwemmer, T.</creator><creator>Thomale, R.</creator><creator>Schäfer, J.</creator><creator>Claessen, R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4218-2477</orcidid><orcidid>https://orcid.org/0000-0001-6942-2568</orcidid><orcidid>https://orcid.org/0000-0002-0615-2211</orcidid><orcidid>https://orcid.org/0000-0002-3979-8836</orcidid><orcidid>https://orcid.org/0000-0003-3682-6325</orcidid></search><sort><creationdate>20200101</creationdate><title>Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator</title><author>Stühler, R. ; Reis, F. ; Müller, T. ; Helbig, T. ; Schwemmer, T. ; Thomale, R. ; Schäfer, J. ; Claessen, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/1000/1018</topic><topic>639/766/119/2792/4128</topic><topic>639/766/119/995</topic><topic>Atomic</topic><topic>Backscattering</topic><topic>Channels</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electron spin</topic><topic>Electron states</topic><topic>Energy</topic><topic>Interaction parameters</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle spin</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Resistance</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Theoretical</topic><topic>Topography</topic><topic>Topological insulators</topic><topic>Topology</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stühler, R.</creatorcontrib><creatorcontrib>Reis, F.</creatorcontrib><creatorcontrib>Müller, T.</creatorcontrib><creatorcontrib>Helbig, T.</creatorcontrib><creatorcontrib>Schwemmer, T.</creatorcontrib><creatorcontrib>Thomale, R.</creatorcontrib><creatorcontrib>Schäfer, J.</creatorcontrib><creatorcontrib>Claessen, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stühler, R.</au><au>Reis, F.</au><au>Müller, T.</au><au>Helbig, T.</au><au>Schwemmer, T.</au><au>Thomale, R.</au><au>Schäfer, J.</au><au>Claessen, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>47</spage><epage>51</epage><pages>47-51</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum spin Hall insulators are two-dimensional materials that host conducting helical electron states strictly confined to the one-dimensional boundaries. These edge channels are protected by time-reversal symmetry against single-particle backscattering, opening new avenues for spin-based electronics and computation. However, the effect of the interelectronic Coulomb repulsion also has to be taken into account, as two-particle scattering is not impeded by topological protection and may strongly affect the edge state conductance. Here, we explore the impact of electronic correlations on highly localized edge states of the unique quantum spin Hall material bismuthene on SiC(0001) (ref.
1
). Exploiting the advantage of having an accessible monolayer substrate system, we use STM/STS to visualize the close-to-perfect one-dimensional confinement of the edge channels and scrutinize their suppressed density of states at the Fermi level. On the basis of the observed spectral behaviour and its universal scaling with energy and temperature, we demonstrate the correspondence with a (helical) Tomonaga–Luttinger liquid. In particular, the extracted interaction parameter
K
is directly relevant to the fundamental question of the temperatures at which the quantized conductance (a hallmark of quantum spin Hall materials) will become obscured by correlations
2
.
Scanning tunnelling microscopy and spectroscopy study of the conductive edge state in a two-dimensional topological insulator reveals the interplay of topology and electronic correlations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0697-z</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4218-2477</orcidid><orcidid>https://orcid.org/0000-0001-6942-2568</orcidid><orcidid>https://orcid.org/0000-0002-0615-2211</orcidid><orcidid>https://orcid.org/0000-0002-3979-8836</orcidid><orcidid>https://orcid.org/0000-0003-3682-6325</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-01, Vol.16 (1), p.47-51 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2342957519 |
source | Nature |
subjects | 639/766/119/1000/1018 639/766/119/2792/4128 639/766/119/995 Atomic Backscattering Channels Classical and Continuum Physics Complex Systems Condensed Matter Physics Electron spin Electron states Energy Interaction parameters Letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Particle spin Physics Physics and Astronomy Resistance Spectrum analysis Substrates Theoretical Topography Topological insulators Topology Two dimensional materials |
title | Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tomonaga%E2%80%93Luttinger%20liquid%20in%20the%20edge%20channels%20of%20a%20quantum%20spin%20Hall%20insulator&rft.jtitle=Nature%20physics&rft.au=St%C3%BChler,%20R.&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=47&rft.epage=51&rft.pages=47-51&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0697-z&rft_dat=%3Cproquest_cross%3E2342957519%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-352293d0ac750c41d4a6fa9f4e02bece4d82a49041d3566a7d67fab6ba459db73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2342957519&rft_id=info:pmid/&rfr_iscdi=true |