Loading…

Horsetail plant (Equisetum arvense) and horsetail plant ash: application and comparison of their catalytic activities as novel and natural porous lewis acid catalysts for the one-pot green synthesis of 2-amino-4H-chromene derivatives under solvent-free conditions

This study aims to use a new medicinal porous plant having a high content of silica known as horsetail and horsetail ash for the first time as novel, efficient, and environmentally friendly natural mild catalysts. The structure of these catalysts was characterized by different techniques such as FT-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Iranian Chemical Society 2020-02, Vol.17 (2), p.397-409
Main Authors: Hosseini Mohtasham, Nina, Gholizadeh, Mostafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to use a new medicinal porous plant having a high content of silica known as horsetail and horsetail ash for the first time as novel, efficient, and environmentally friendly natural mild catalysts. The structure of these catalysts was characterized by different techniques such as FT-IR, XRF, SEM–EDS, N 2 adsorption–desorption, XRD, and ICP analysis. The results obtained from the analysis revealed that both horsetail and horsetail ash could act as a solid acid catalyst. In addition, a further detailed analysis illustrated that they have a different surface area, porosity, and crystalline structure which can affect their catalytic activities. The synthesis of 2-amino-4 H -chromene derivatives was performed via a one-pot three-component condensation of dimedone, malononitrile, and various aromatic aldehydes to compare their catalytic activities under solvent-free conditions. Due to its high porosity and high surface area, horsetail ash yields better results compared to the horsetail itself. FT-IR, mass, 1 H-NMR, and 13 C-NMR spectroscopies were used to identify the synthesized compounds in this study. An important advantage of this method is the use of these effective natural catalytic systems with characteristics such as low cost, mild reaction conditions, nontoxicity, and reusability which resulted in corresponding products in high to excellent yields and proper reaction times.
ISSN:1735-207X
1735-2428
DOI:10.1007/s13738-019-01777-1