Loading…

Dynamics of Noncommutative Solitons I: Spectral Theory and Dispersive Estimates

We consider the Schrödinger equation with a Hamiltonian given by a second-order difference operator with nonconstant growing coefficients, on the half one-dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncomm...

Full description

Saved in:
Bibliographic Details
Published in:Annales Henri Poincaré 2016-05, Vol.17 (5), p.1181-1208
Main Authors: Krueger, August J., Soffer, Avy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-9b387863dc8c24b8d92eeb01d9c568992bffd3f2e7e286e839fbac5a06e48b723
cites cdi_FETCH-LOGICAL-c316t-9b387863dc8c24b8d92eeb01d9c568992bffd3f2e7e286e839fbac5a06e48b723
container_end_page 1208
container_issue 5
container_start_page 1181
container_title Annales Henri Poincaré
container_volume 17
creator Krueger, August J.
Soffer, Avy
description We consider the Schrödinger equation with a Hamiltonian given by a second-order difference operator with nonconstant growing coefficients, on the half one-dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncommutative field theory. We prove pointwise in time decay estimates with the decay rate t - 1 log - 2 t , which is optimal with the chosen weights and appears to be so generally. We use a novel technique involving generating functions of orthogonal polynomials to achieve this estimate.
doi_str_mv 10.1007/s00023-015-0431-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343267862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343267862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9b387863dc8c24b8d92eeb01d9c568992bffd3f2e7e286e839fbac5a06e48b723</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ74kToOO9QHVKroomVtOc4EUjVxsF2k9utxFAQrVjOLc--MDkK3lNxTQrIHTwhhPCF0kpCU0-R0hkY0ZWlChKDnvzvPLtGV9ztCKJM8H6H17NjqpjYe2wq_2tbYpjkEHeovwBu7r4NtPV4-4k0HJji9x9sPsO6IdVviWe07cL5H5z7UjQ7gr9FFpfcebn7mGL0t5tvpS7JaPy-nT6vEcCpCkhdcZlLw0kjD0kKWOQMoCC1zMxEyz1lRVSWvGGTApID4alVoM9FEQCqLjPExuht6O2c_D-CD2tmDa-NJxXjKmYjtPUUHyjjrvYNKdS7-6Y6KEtV7U4M3Fb2p3ps6xQwbMj6y7Tu4v-b_Q9_2lXEH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343267862</pqid></control><display><type>article</type><title>Dynamics of Noncommutative Solitons I: Spectral Theory and Dispersive Estimates</title><source>Springer Link</source><creator>Krueger, August J. ; Soffer, Avy</creator><creatorcontrib>Krueger, August J. ; Soffer, Avy</creatorcontrib><description>We consider the Schrödinger equation with a Hamiltonian given by a second-order difference operator with nonconstant growing coefficients, on the half one-dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncommutative field theory. We prove pointwise in time decay estimates with the decay rate t - 1 log - 2 t , which is optimal with the chosen weights and appears to be so generally. We use a novel technique involving generating functions of orthogonal polynomials to achieve this estimate.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-015-0431-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Decay rate ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Field theory ; Finite differences ; Functions (mathematics) ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Schrodinger equation ; Solitary waves ; Spectral theory ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2016-05, Vol.17 (5), p.1181-1208</ispartof><rights>Springer Basel 2015</rights><rights>2015© Springer Basel 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9b387863dc8c24b8d92eeb01d9c568992bffd3f2e7e286e839fbac5a06e48b723</citedby><cites>FETCH-LOGICAL-c316t-9b387863dc8c24b8d92eeb01d9c568992bffd3f2e7e286e839fbac5a06e48b723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Krueger, August J.</creatorcontrib><creatorcontrib>Soffer, Avy</creatorcontrib><title>Dynamics of Noncommutative Solitons I: Spectral Theory and Dispersive Estimates</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We consider the Schrödinger equation with a Hamiltonian given by a second-order difference operator with nonconstant growing coefficients, on the half one-dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncommutative field theory. We prove pointwise in time decay estimates with the decay rate t - 1 log - 2 t , which is optimal with the chosen weights and appears to be so generally. We use a novel technique involving generating functions of orthogonal polynomials to achieve this estimate.</description><subject>Classical and Quantum Gravitation</subject><subject>Decay rate</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Field theory</subject><subject>Finite differences</subject><subject>Functions (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Spectral theory</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ74kToOO9QHVKroomVtOc4EUjVxsF2k9utxFAQrVjOLc--MDkK3lNxTQrIHTwhhPCF0kpCU0-R0hkY0ZWlChKDnvzvPLtGV9ztCKJM8H6H17NjqpjYe2wq_2tbYpjkEHeovwBu7r4NtPV4-4k0HJji9x9sPsO6IdVviWe07cL5H5z7UjQ7gr9FFpfcebn7mGL0t5tvpS7JaPy-nT6vEcCpCkhdcZlLw0kjD0kKWOQMoCC1zMxEyz1lRVSWvGGTApID4alVoM9FEQCqLjPExuht6O2c_D-CD2tmDa-NJxXjKmYjtPUUHyjjrvYNKdS7-6Y6KEtV7U4M3Fb2p3ps6xQwbMj6y7Tu4v-b_Q9_2lXEH</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Krueger, August J.</creator><creator>Soffer, Avy</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160501</creationdate><title>Dynamics of Noncommutative Solitons I: Spectral Theory and Dispersive Estimates</title><author>Krueger, August J. ; Soffer, Avy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9b387863dc8c24b8d92eeb01d9c568992bffd3f2e7e286e839fbac5a06e48b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Decay rate</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Field theory</topic><topic>Finite differences</topic><topic>Functions (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Spectral theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krueger, August J.</creatorcontrib><creatorcontrib>Soffer, Avy</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krueger, August J.</au><au>Soffer, Avy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Noncommutative Solitons I: Spectral Theory and Dispersive Estimates</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>17</volume><issue>5</issue><spage>1181</spage><epage>1208</epage><pages>1181-1208</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We consider the Schrödinger equation with a Hamiltonian given by a second-order difference operator with nonconstant growing coefficients, on the half one-dimensional lattice. This operator appeared first naturally in the construction and dynamics of noncommutative solitons in the context of noncommutative field theory. We prove pointwise in time decay estimates with the decay rate t - 1 log - 2 t , which is optimal with the chosen weights and appears to be so generally. We use a novel technique involving generating functions of orthogonal polynomials to achieve this estimate.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-015-0431-z</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2016-05, Vol.17 (5), p.1181-1208
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2343267862
source Springer Link
subjects Classical and Quantum Gravitation
Decay rate
Dynamical Systems and Ergodic Theory
Elementary Particles
Field theory
Finite differences
Functions (mathematics)
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Operators (mathematics)
Physics
Physics and Astronomy
Polynomials
Quantum Field Theory
Quantum Physics
Relativity Theory
Schrodinger equation
Solitary waves
Spectral theory
Theoretical
title Dynamics of Noncommutative Solitons I: Spectral Theory and Dispersive Estimates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Noncommutative%20Solitons%20I:%20Spectral%20Theory%20and%20Dispersive%20Estimates&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Krueger,%20August%20J.&rft.date=2016-05-01&rft.volume=17&rft.issue=5&rft.spage=1181&rft.epage=1208&rft.pages=1181-1208&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-015-0431-z&rft_dat=%3Cproquest_cross%3E2343267862%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9b387863dc8c24b8d92eeb01d9c568992bffd3f2e7e286e839fbac5a06e48b723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343267862&rft_id=info:pmid/&rfr_iscdi=true