Loading…

Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties

The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but th...

Full description

Saved in:
Bibliographic Details
Published in:CEAS aeronautical journal 2020, Vol.11 (1), p.33-47
Main Authors: Da Ronch, Andrea, Panzeri, Marco, Drofelnik, Jernej, d’Ippolito, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173
cites cdi_FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173
container_end_page 47
container_issue 1
container_start_page 33
container_title CEAS aeronautical journal
container_volume 11
creator Da Ronch, Andrea
Panzeri, Marco
Drofelnik, Jernej
d’Ippolito, Roberto
description The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process.
doi_str_mv 10.1007/s13272-019-00389-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343270092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343270092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu4f8BTwXJ0kTZseZfELFjyoFy8hzSaapZvWJBX6741b0ZtzmeHxPpiH0DmBSwJQX0XCaE0LIE0BwERTTEdoQUTVFJw3cPx7C3qKVjHuIE8FrOTlAr0-GR9dcp8uTVj5Ldaqc21QyfUe9xanMbRjZ7w2eN9vTYedx-nd4CGYeEAzxwwuJrN3Go8ZCUk5n5yJZ-jEqi6a1c9eopfbm-f1fbF5vHtYX28KTWsxFaK1IPgWVMWFrRRQSgS11mptOOMVcM6Zsvm5WkApdCNMW-uG2ZarkpSkZkt0MfsOof8YTUxy14_B50hJWZmrAWhoZtGZpUMfYzBWDsHtVZgkAfldo5xrlDlJHmqUUxaxWRQz2b-Z8Gf9j-oLeYF2Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343270092</pqid></control><display><type>article</type><title>Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties</title><source>Springer Link</source><creator>Da Ronch, Andrea ; Panzeri, Marco ; Drofelnik, Jernej ; d’Ippolito, Roberto</creator><creatorcontrib>Da Ronch, Andrea ; Panzeri, Marco ; Drofelnik, Jernej ; d’Ippolito, Roberto</creatorcontrib><description>The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process.</description><identifier>ISSN: 1869-5582</identifier><identifier>EISSN: 1869-5590</identifier><identifier>DOI: 10.1007/s13272-019-00389-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerodynamics ; Aerospace Technology and Astronautics ; Airfoils ; Calibration ; Coefficients ; Computational fluid dynamics ; Design of experiments ; Dimensional analysis ; Engineering ; Machine learning ; Model accuracy ; Original Paper ; Solvers ; Spalart-Allmaras turbulence model ; Transonic flow ; Turbulence models</subject><ispartof>CEAS aeronautical journal, 2020, Vol.11 (1), p.33-47</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173</citedby><cites>FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173</cites><orcidid>0000-0001-7428-6935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Da Ronch, Andrea</creatorcontrib><creatorcontrib>Panzeri, Marco</creatorcontrib><creatorcontrib>Drofelnik, Jernej</creatorcontrib><creatorcontrib>d’Ippolito, Roberto</creatorcontrib><title>Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties</title><title>CEAS aeronautical journal</title><addtitle>CEAS Aeronaut J</addtitle><description>The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process.</description><subject>Aerodynamics</subject><subject>Aerospace Technology and Astronautics</subject><subject>Airfoils</subject><subject>Calibration</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Design of experiments</subject><subject>Dimensional analysis</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Original Paper</subject><subject>Solvers</subject><subject>Spalart-Allmaras turbulence model</subject><subject>Transonic flow</subject><subject>Turbulence models</subject><issn>1869-5582</issn><issn>1869-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgsu4f8BTwXJ0kTZseZfELFjyoFy8hzSaapZvWJBX6741b0ZtzmeHxPpiH0DmBSwJQX0XCaE0LIE0BwERTTEdoQUTVFJw3cPx7C3qKVjHuIE8FrOTlAr0-GR9dcp8uTVj5Ldaqc21QyfUe9xanMbRjZ7w2eN9vTYedx-nd4CGYeEAzxwwuJrN3Go8ZCUk5n5yJZ-jEqi6a1c9eopfbm-f1fbF5vHtYX28KTWsxFaK1IPgWVMWFrRRQSgS11mptOOMVcM6Zsvm5WkApdCNMW-uG2ZarkpSkZkt0MfsOof8YTUxy14_B50hJWZmrAWhoZtGZpUMfYzBWDsHtVZgkAfldo5xrlDlJHmqUUxaxWRQz2b-Z8Gf9j-oLeYF2Yw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Da Ronch, Andrea</creator><creator>Panzeri, Marco</creator><creator>Drofelnik, Jernej</creator><creator>d’Ippolito, Roberto</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7428-6935</orcidid></search><sort><creationdate>2020</creationdate><title>Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties</title><author>Da Ronch, Andrea ; Panzeri, Marco ; Drofelnik, Jernej ; d’Ippolito, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aerospace Technology and Astronautics</topic><topic>Airfoils</topic><topic>Calibration</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Design of experiments</topic><topic>Dimensional analysis</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Original Paper</topic><topic>Solvers</topic><topic>Spalart-Allmaras turbulence model</topic><topic>Transonic flow</topic><topic>Turbulence models</topic><toplevel>online_resources</toplevel><creatorcontrib>Da Ronch, Andrea</creatorcontrib><creatorcontrib>Panzeri, Marco</creatorcontrib><creatorcontrib>Drofelnik, Jernej</creatorcontrib><creatorcontrib>d’Ippolito, Roberto</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>CEAS aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Ronch, Andrea</au><au>Panzeri, Marco</au><au>Drofelnik, Jernej</au><au>d’Ippolito, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties</atitle><jtitle>CEAS aeronautical journal</jtitle><stitle>CEAS Aeronaut J</stitle><date>2020</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>33</spage><epage>47</epage><pages>33-47</pages><issn>1869-5582</issn><eissn>1869-5590</eissn><abstract>The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13272-019-00389-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7428-6935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-5582
ispartof CEAS aeronautical journal, 2020, Vol.11 (1), p.33-47
issn 1869-5582
1869-5590
language eng
recordid cdi_proquest_journals_2343270092
source Springer Link
subjects Aerodynamics
Aerospace Technology and Astronautics
Airfoils
Calibration
Coefficients
Computational fluid dynamics
Design of experiments
Dimensional analysis
Engineering
Machine learning
Model accuracy
Original Paper
Solvers
Spalart-Allmaras turbulence model
Transonic flow
Turbulence models
title Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20and%20calibration%20of%20turbulence%20model%20in%20the%20presence%20of%20epistemic%20uncertainties&rft.jtitle=CEAS%20aeronautical%20journal&rft.au=Da%20Ronch,%20Andrea&rft.date=2020&rft.volume=11&rft.issue=1&rft.spage=33&rft.epage=47&rft.pages=33-47&rft.issn=1869-5582&rft.eissn=1869-5590&rft_id=info:doi/10.1007/s13272-019-00389-y&rft_dat=%3Cproquest_cross%3E2343270092%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343270092&rft_id=info:pmid/&rfr_iscdi=true