Loading…
Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties
The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but th...
Saved in:
Published in: | CEAS aeronautical journal 2020, Vol.11 (1), p.33-47 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173 |
---|---|
cites | cdi_FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173 |
container_end_page | 47 |
container_issue | 1 |
container_start_page | 33 |
container_title | CEAS aeronautical journal |
container_volume | 11 |
creator | Da Ronch, Andrea Panzeri, Marco Drofelnik, Jernej d’Ippolito, Roberto |
description | The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process. |
doi_str_mv | 10.1007/s13272-019-00389-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343270092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343270092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu4f8BTwXJ0kTZseZfELFjyoFy8hzSaapZvWJBX6741b0ZtzmeHxPpiH0DmBSwJQX0XCaE0LIE0BwERTTEdoQUTVFJw3cPx7C3qKVjHuIE8FrOTlAr0-GR9dcp8uTVj5Ldaqc21QyfUe9xanMbRjZ7w2eN9vTYedx-nd4CGYeEAzxwwuJrN3Go8ZCUk5n5yJZ-jEqi6a1c9eopfbm-f1fbF5vHtYX28KTWsxFaK1IPgWVMWFrRRQSgS11mptOOMVcM6Zsvm5WkApdCNMW-uG2ZarkpSkZkt0MfsOof8YTUxy14_B50hJWZmrAWhoZtGZpUMfYzBWDsHtVZgkAfldo5xrlDlJHmqUUxaxWRQz2b-Z8Gf9j-oLeYF2Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343270092</pqid></control><display><type>article</type><title>Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties</title><source>Springer Link</source><creator>Da Ronch, Andrea ; Panzeri, Marco ; Drofelnik, Jernej ; d’Ippolito, Roberto</creator><creatorcontrib>Da Ronch, Andrea ; Panzeri, Marco ; Drofelnik, Jernej ; d’Ippolito, Roberto</creatorcontrib><description>The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process.</description><identifier>ISSN: 1869-5582</identifier><identifier>EISSN: 1869-5590</identifier><identifier>DOI: 10.1007/s13272-019-00389-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerodynamics ; Aerospace Technology and Astronautics ; Airfoils ; Calibration ; Coefficients ; Computational fluid dynamics ; Design of experiments ; Dimensional analysis ; Engineering ; Machine learning ; Model accuracy ; Original Paper ; Solvers ; Spalart-Allmaras turbulence model ; Transonic flow ; Turbulence models</subject><ispartof>CEAS aeronautical journal, 2020, Vol.11 (1), p.33-47</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173</citedby><cites>FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173</cites><orcidid>0000-0001-7428-6935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Da Ronch, Andrea</creatorcontrib><creatorcontrib>Panzeri, Marco</creatorcontrib><creatorcontrib>Drofelnik, Jernej</creatorcontrib><creatorcontrib>d’Ippolito, Roberto</creatorcontrib><title>Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties</title><title>CEAS aeronautical journal</title><addtitle>CEAS Aeronaut J</addtitle><description>The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process.</description><subject>Aerodynamics</subject><subject>Aerospace Technology and Astronautics</subject><subject>Airfoils</subject><subject>Calibration</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Design of experiments</subject><subject>Dimensional analysis</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Original Paper</subject><subject>Solvers</subject><subject>Spalart-Allmaras turbulence model</subject><subject>Transonic flow</subject><subject>Turbulence models</subject><issn>1869-5582</issn><issn>1869-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgsu4f8BTwXJ0kTZseZfELFjyoFy8hzSaapZvWJBX6741b0ZtzmeHxPpiH0DmBSwJQX0XCaE0LIE0BwERTTEdoQUTVFJw3cPx7C3qKVjHuIE8FrOTlAr0-GR9dcp8uTVj5Ldaqc21QyfUe9xanMbRjZ7w2eN9vTYedx-nd4CGYeEAzxwwuJrN3Go8ZCUk5n5yJZ-jEqi6a1c9eopfbm-f1fbF5vHtYX28KTWsxFaK1IPgWVMWFrRRQSgS11mptOOMVcM6Zsvm5WkApdCNMW-uG2ZarkpSkZkt0MfsOof8YTUxy14_B50hJWZmrAWhoZtGZpUMfYzBWDsHtVZgkAfldo5xrlDlJHmqUUxaxWRQz2b-Z8Gf9j-oLeYF2Yw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Da Ronch, Andrea</creator><creator>Panzeri, Marco</creator><creator>Drofelnik, Jernej</creator><creator>d’Ippolito, Roberto</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7428-6935</orcidid></search><sort><creationdate>2020</creationdate><title>Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties</title><author>Da Ronch, Andrea ; Panzeri, Marco ; Drofelnik, Jernej ; d’Ippolito, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aerospace Technology and Astronautics</topic><topic>Airfoils</topic><topic>Calibration</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Design of experiments</topic><topic>Dimensional analysis</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Original Paper</topic><topic>Solvers</topic><topic>Spalart-Allmaras turbulence model</topic><topic>Transonic flow</topic><topic>Turbulence models</topic><toplevel>online_resources</toplevel><creatorcontrib>Da Ronch, Andrea</creatorcontrib><creatorcontrib>Panzeri, Marco</creatorcontrib><creatorcontrib>Drofelnik, Jernej</creatorcontrib><creatorcontrib>d’Ippolito, Roberto</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>CEAS aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Ronch, Andrea</au><au>Panzeri, Marco</au><au>Drofelnik, Jernej</au><au>d’Ippolito, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties</atitle><jtitle>CEAS aeronautical journal</jtitle><stitle>CEAS Aeronaut J</stitle><date>2020</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>33</spage><epage>47</epage><pages>33-47</pages><issn>1869-5582</issn><eissn>1869-5590</eissn><abstract>The solution of Reynolds-averaged Navier–Stokes equations employs an appropriate set of equations for the turbulence modelling. The closure coefficients of the turbulence model were calibrated using empiricism and arguments of dimensional analysis. These coefficients are considered universal, but there is no guarantee this property applies to test cases other than those used in the calibration process. This work aims at revisiting the calibration of the closure coefficients of the original Spalart–Allmaras turbulence model using machine learning, adaptive design of experiments and accessing a high-performance computing facility. The automated calibration procedure is carried out once for a transonic, wall-bounded flow around the RAE 2822 aerofoil. It was found that: (a) an optimal set of closure coefficients exists that minimises numerical deviations from experimental data; (b) the improved prediction accuracy of the calibrated turbulence model is consistent across different flow solvers; and (c) the calibrated turbulence model outperforms slightly the standard model in analysing complex flow features around additional test cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal motion of NACA 0012 aerofoil). A by-product of this study is a fully calibrated turbulence model that leverages on current state-of-the-art computational techniques, overcoming inherent limitations of the manual fine-tuning process.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13272-019-00389-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7428-6935</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5582 |
ispartof | CEAS aeronautical journal, 2020, Vol.11 (1), p.33-47 |
issn | 1869-5582 1869-5590 |
language | eng |
recordid | cdi_proquest_journals_2343270092 |
source | Springer Link |
subjects | Aerodynamics Aerospace Technology and Astronautics Airfoils Calibration Coefficients Computational fluid dynamics Design of experiments Dimensional analysis Engineering Machine learning Model accuracy Original Paper Solvers Spalart-Allmaras turbulence model Transonic flow Turbulence models |
title | Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20and%20calibration%20of%20turbulence%20model%20in%20the%20presence%20of%20epistemic%20uncertainties&rft.jtitle=CEAS%20aeronautical%20journal&rft.au=Da%20Ronch,%20Andrea&rft.date=2020&rft.volume=11&rft.issue=1&rft.spage=33&rft.epage=47&rft.pages=33-47&rft.issn=1869-5582&rft.eissn=1869-5590&rft_id=info:doi/10.1007/s13272-019-00389-y&rft_dat=%3Cproquest_cross%3E2343270092%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278y-8bf085d0a658f6a022182fffcce535605553af01978048c98eb7c93fb5a414173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343270092&rft_id=info:pmid/&rfr_iscdi=true |