Loading…
Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field
Given any γ > 0 and for η = { η v } v ∈ Z 2 denoting a sample of the two-dimensional discrete Gaussian free field on Z 2 pinned at the origin, we consider the random walk on Z 2 among random conductances where the conductance of edge ( u , v ) is given by e γ ( η u + η v ) . We show that, for a...
Saved in:
Published in: | Communications in mathematical physics 2020, Vol.373 (1), p.45-106 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3 |
container_end_page | 106 |
container_issue | 1 |
container_start_page | 45 |
container_title | Communications in mathematical physics |
container_volume | 373 |
creator | Biskup, Marek Ding, Jian Goswami, Subhajit |
description | Given any
γ
>
0
and for
η
=
{
η
v
}
v
∈
Z
2
denoting a sample of the two-dimensional discrete Gaussian free field on
Z
2
pinned at the origin, we consider the random walk on
Z
2
among random conductances where the conductance of edge (
u
,
v
) is given by
e
γ
(
η
u
+
η
v
)
. We show that, for almost every
η
, this random walk is recurrent and that, with probability tending to 1 as
T
→
∞
, the return probability at time 2
T
decays as
T
-
1
+
o
(
1
)
. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius
N
scales as
N
ψ
(
γ
)
+
o
(
1
)
with
ψ
(
γ
)
>
2
for all
γ
>
0
. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance
N
behaves as
N
o
(
1
)
. |
doi_str_mv | 10.1007/s00220-019-03589-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343272031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343272031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJ0nbtpUw3hYEyJl6GND3RzK6dSatsT2-0gndeHTh8_384HyHnHC45wOQqAAgBDHjBQKZ5wfYHZMQTKRgUPDskIwAOTGY8OyYnIawBoBBZNiJmiV3vG_ro21KXrnbdjuqmoks0vffYGKS29bR7RbqM-3ZDn3X9Rm-8-8CGlju6-mzZjdtgE1zb6JrOdR-C0w2deUQ6c1hXp-TI6jrg2e8ck6fZ7Wp6xxYP8_vp9YIZyYuOoUlTrJIs1SIpU15pa3NdmorzKkk4VoXI0yLPJIeMWyGkqcAmEy0BTESslWNyMfRuffveY-jUuo2_xZNKyOhiIkDySImBMr4NwaNVW-822u8UB_UtUw0yVZSpfmSqfQzJIRQi3Lyg_6v-J_UF-YR4Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343272031</pqid></control><display><type>article</type><title>Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</title><source>Springer Nature</source><creator>Biskup, Marek ; Ding, Jian ; Goswami, Subhajit</creator><creatorcontrib>Biskup, Marek ; Ding, Jian ; Goswami, Subhajit</creatorcontrib><description>Given any
γ
>
0
and for
η
=
{
η
v
}
v
∈
Z
2
denoting a sample of the two-dimensional discrete Gaussian free field on
Z
2
pinned at the origin, we consider the random walk on
Z
2
among random conductances where the conductance of edge (
u
,
v
) is given by
e
γ
(
η
u
+
η
v
)
. We show that, for almost every
η
, this random walk is recurrent and that, with probability tending to 1 as
T
→
∞
, the return probability at time 2
T
decays as
T
-
1
+
o
(
1
)
. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius
N
scales as
N
ψ
(
γ
)
+
o
(
1
)
with
ψ
(
γ
)
>
2
for all
γ
>
0
. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance
N
behaves as
N
o
(
1
)
.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03589-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apexes ; Classical and Quantum Gravitation ; Complex Systems ; Economic models ; Euclidean geometry ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Random walk ; Random walk theory ; Relativity Theory ; Resistance ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020, Vol.373 (1), p.45-106</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3</citedby><cites>FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3</cites><orcidid>0000-0001-5560-6518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Biskup, Marek</creatorcontrib><creatorcontrib>Ding, Jian</creatorcontrib><creatorcontrib>Goswami, Subhajit</creatorcontrib><title>Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>Given any
γ
>
0
and for
η
=
{
η
v
}
v
∈
Z
2
denoting a sample of the two-dimensional discrete Gaussian free field on
Z
2
pinned at the origin, we consider the random walk on
Z
2
among random conductances where the conductance of edge (
u
,
v
) is given by
e
γ
(
η
u
+
η
v
)
. We show that, for almost every
η
, this random walk is recurrent and that, with probability tending to 1 as
T
→
∞
, the return probability at time 2
T
decays as
T
-
1
+
o
(
1
)
. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius
N
scales as
N
ψ
(
γ
)
+
o
(
1
)
with
ψ
(
γ
)
>
2
for all
γ
>
0
. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance
N
behaves as
N
o
(
1
)
.</description><subject>Apexes</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Economic models</subject><subject>Euclidean geometry</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Relativity Theory</subject><subject>Resistance</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJ0nbtpUw3hYEyJl6GND3RzK6dSatsT2-0gndeHTh8_384HyHnHC45wOQqAAgBDHjBQKZ5wfYHZMQTKRgUPDskIwAOTGY8OyYnIawBoBBZNiJmiV3vG_ro21KXrnbdjuqmoks0vffYGKS29bR7RbqM-3ZDn3X9Rm-8-8CGlju6-mzZjdtgE1zb6JrOdR-C0w2deUQ6c1hXp-TI6jrg2e8ck6fZ7Wp6xxYP8_vp9YIZyYuOoUlTrJIs1SIpU15pa3NdmorzKkk4VoXI0yLPJIeMWyGkqcAmEy0BTESslWNyMfRuffveY-jUuo2_xZNKyOhiIkDySImBMr4NwaNVW-822u8UB_UtUw0yVZSpfmSqfQzJIRQi3Lyg_6v-J_UF-YR4Dg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Biskup, Marek</creator><creator>Ding, Jian</creator><creator>Goswami, Subhajit</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5560-6518</orcidid></search><sort><creationdate>2020</creationdate><title>Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</title><author>Biskup, Marek ; Ding, Jian ; Goswami, Subhajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Economic models</topic><topic>Euclidean geometry</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Relativity Theory</topic><topic>Resistance</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biskup, Marek</creatorcontrib><creatorcontrib>Ding, Jian</creatorcontrib><creatorcontrib>Goswami, Subhajit</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biskup, Marek</au><au>Ding, Jian</au><au>Goswami, Subhajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020</date><risdate>2020</risdate><volume>373</volume><issue>1</issue><spage>45</spage><epage>106</epage><pages>45-106</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>Given any
γ
>
0
and for
η
=
{
η
v
}
v
∈
Z
2
denoting a sample of the two-dimensional discrete Gaussian free field on
Z
2
pinned at the origin, we consider the random walk on
Z
2
among random conductances where the conductance of edge (
u
,
v
) is given by
e
γ
(
η
u
+
η
v
)
. We show that, for almost every
η
, this random walk is recurrent and that, with probability tending to 1 as
T
→
∞
, the return probability at time 2
T
decays as
T
-
1
+
o
(
1
)
. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius
N
scales as
N
ψ
(
γ
)
+
o
(
1
)
with
ψ
(
γ
)
>
2
for all
γ
>
0
. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance
N
behaves as
N
o
(
1
)
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03589-z</doi><tpages>62</tpages><orcidid>https://orcid.org/0000-0001-5560-6518</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2020, Vol.373 (1), p.45-106 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2343272031 |
source | Springer Nature |
subjects | Apexes Classical and Quantum Gravitation Complex Systems Economic models Euclidean geometry Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Random walk Random walk theory Relativity Theory Resistance Theoretical |
title | Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Return%20Probability%20and%20Recurrence%20for%20the%20Random%20Walk%20Driven%20by%20Two-Dimensional%20Gaussian%20Free%20Field&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Biskup,%20Marek&rft.date=2020&rft.volume=373&rft.issue=1&rft.spage=45&rft.epage=106&rft.pages=45-106&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03589-z&rft_dat=%3Cproquest_cross%3E2343272031%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343272031&rft_id=info:pmid/&rfr_iscdi=true |