Loading…

Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field

Given any γ > 0 and for η = { η v } v ∈ Z 2 denoting a sample of the two-dimensional discrete Gaussian free field on Z 2 pinned at the origin, we consider the random walk on  Z 2 among random conductances where the conductance of edge ( u ,  v ) is given by e γ ( η u + η v ) . We show that, for a...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2020, Vol.373 (1), p.45-106
Main Authors: Biskup, Marek, Ding, Jian, Goswami, Subhajit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3
cites cdi_FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3
container_end_page 106
container_issue 1
container_start_page 45
container_title Communications in mathematical physics
container_volume 373
creator Biskup, Marek
Ding, Jian
Goswami, Subhajit
description Given any γ > 0 and for η = { η v } v ∈ Z 2 denoting a sample of the two-dimensional discrete Gaussian free field on Z 2 pinned at the origin, we consider the random walk on  Z 2 among random conductances where the conductance of edge ( u ,  v ) is given by e γ ( η u + η v ) . We show that, for almost every  η , this random walk is recurrent and that, with probability tending to 1 as T → ∞ , the return probability at time 2 T decays as T - 1 + o ( 1 ) . In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius  N scales as N ψ ( γ ) + o ( 1 ) with ψ ( γ ) > 2 for all  γ > 0 . Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance  N behaves as  N o ( 1 ) .
doi_str_mv 10.1007/s00220-019-03589-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343272031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343272031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJ0nbtpUw3hYEyJl6GND3RzK6dSatsT2-0gndeHTh8_384HyHnHC45wOQqAAgBDHjBQKZ5wfYHZMQTKRgUPDskIwAOTGY8OyYnIawBoBBZNiJmiV3vG_ro21KXrnbdjuqmoks0vffYGKS29bR7RbqM-3ZDn3X9Rm-8-8CGlju6-mzZjdtgE1zb6JrOdR-C0w2deUQ6c1hXp-TI6jrg2e8ck6fZ7Wp6xxYP8_vp9YIZyYuOoUlTrJIs1SIpU15pa3NdmorzKkk4VoXI0yLPJIeMWyGkqcAmEy0BTESslWNyMfRuffveY-jUuo2_xZNKyOhiIkDySImBMr4NwaNVW-822u8UB_UtUw0yVZSpfmSqfQzJIRQi3Lyg_6v-J_UF-YR4Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343272031</pqid></control><display><type>article</type><title>Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</title><source>Springer Nature</source><creator>Biskup, Marek ; Ding, Jian ; Goswami, Subhajit</creator><creatorcontrib>Biskup, Marek ; Ding, Jian ; Goswami, Subhajit</creatorcontrib><description>Given any γ &gt; 0 and for η = { η v } v ∈ Z 2 denoting a sample of the two-dimensional discrete Gaussian free field on Z 2 pinned at the origin, we consider the random walk on  Z 2 among random conductances where the conductance of edge ( u ,  v ) is given by e γ ( η u + η v ) . We show that, for almost every  η , this random walk is recurrent and that, with probability tending to 1 as T → ∞ , the return probability at time 2 T decays as T - 1 + o ( 1 ) . In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius  N scales as N ψ ( γ ) + o ( 1 ) with ψ ( γ ) &gt; 2 for all  γ &gt; 0 . Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance  N behaves as  N o ( 1 ) .</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03589-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apexes ; Classical and Quantum Gravitation ; Complex Systems ; Economic models ; Euclidean geometry ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Random walk ; Random walk theory ; Relativity Theory ; Resistance ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020, Vol.373 (1), p.45-106</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3</citedby><cites>FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3</cites><orcidid>0000-0001-5560-6518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Biskup, Marek</creatorcontrib><creatorcontrib>Ding, Jian</creatorcontrib><creatorcontrib>Goswami, Subhajit</creatorcontrib><title>Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>Given any γ &gt; 0 and for η = { η v } v ∈ Z 2 denoting a sample of the two-dimensional discrete Gaussian free field on Z 2 pinned at the origin, we consider the random walk on  Z 2 among random conductances where the conductance of edge ( u ,  v ) is given by e γ ( η u + η v ) . We show that, for almost every  η , this random walk is recurrent and that, with probability tending to 1 as T → ∞ , the return probability at time 2 T decays as T - 1 + o ( 1 ) . In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius  N scales as N ψ ( γ ) + o ( 1 ) with ψ ( γ ) &gt; 2 for all  γ &gt; 0 . Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance  N behaves as  N o ( 1 ) .</description><subject>Apexes</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Economic models</subject><subject>Euclidean geometry</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Relativity Theory</subject><subject>Resistance</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJ0nbtpUw3hYEyJl6GND3RzK6dSatsT2-0gndeHTh8_384HyHnHC45wOQqAAgBDHjBQKZ5wfYHZMQTKRgUPDskIwAOTGY8OyYnIawBoBBZNiJmiV3vG_ro21KXrnbdjuqmoks0vffYGKS29bR7RbqM-3ZDn3X9Rm-8-8CGlju6-mzZjdtgE1zb6JrOdR-C0w2deUQ6c1hXp-TI6jrg2e8ck6fZ7Wp6xxYP8_vp9YIZyYuOoUlTrJIs1SIpU15pa3NdmorzKkk4VoXI0yLPJIeMWyGkqcAmEy0BTESslWNyMfRuffveY-jUuo2_xZNKyOhiIkDySImBMr4NwaNVW-822u8UB_UtUw0yVZSpfmSqfQzJIRQi3Lyg_6v-J_UF-YR4Dg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Biskup, Marek</creator><creator>Ding, Jian</creator><creator>Goswami, Subhajit</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5560-6518</orcidid></search><sort><creationdate>2020</creationdate><title>Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</title><author>Biskup, Marek ; Ding, Jian ; Goswami, Subhajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Economic models</topic><topic>Euclidean geometry</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Relativity Theory</topic><topic>Resistance</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biskup, Marek</creatorcontrib><creatorcontrib>Ding, Jian</creatorcontrib><creatorcontrib>Goswami, Subhajit</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biskup, Marek</au><au>Ding, Jian</au><au>Goswami, Subhajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020</date><risdate>2020</risdate><volume>373</volume><issue>1</issue><spage>45</spage><epage>106</epage><pages>45-106</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>Given any γ &gt; 0 and for η = { η v } v ∈ Z 2 denoting a sample of the two-dimensional discrete Gaussian free field on Z 2 pinned at the origin, we consider the random walk on  Z 2 among random conductances where the conductance of edge ( u ,  v ) is given by e γ ( η u + η v ) . We show that, for almost every  η , this random walk is recurrent and that, with probability tending to 1 as T → ∞ , the return probability at time 2 T decays as T - 1 + o ( 1 ) . In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius  N scales as N ψ ( γ ) + o ( 1 ) with ψ ( γ ) &gt; 2 for all  γ &gt; 0 . Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance  N behaves as  N o ( 1 ) .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03589-z</doi><tpages>62</tpages><orcidid>https://orcid.org/0000-0001-5560-6518</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020, Vol.373 (1), p.45-106
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2343272031
source Springer Nature
subjects Apexes
Classical and Quantum Gravitation
Complex Systems
Economic models
Euclidean geometry
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Random walk
Random walk theory
Relativity Theory
Resistance
Theoretical
title Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Return%20Probability%20and%20Recurrence%20for%20the%20Random%20Walk%20Driven%20by%20Two-Dimensional%20Gaussian%20Free%20Field&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Biskup,%20Marek&rft.date=2020&rft.volume=373&rft.issue=1&rft.spage=45&rft.epage=106&rft.pages=45-106&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03589-z&rft_dat=%3Cproquest_cross%3E2343272031%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-ec55ed465a24b51daff8abcd11d441ed928598631061f223cd0f47a300c11dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343272031&rft_id=info:pmid/&rfr_iscdi=true