Loading…
3D control stretched length of lambda-phage WLC DNA molecule by nonlinear optical tweezers
In this paper, the general Langevin equations of motion for the polystyrene bead linked to the lambda-phage worm-like chain DNA molecule embedded in the fluid under the nonlinear optical tweezers is derived in 3D space. Using the finite difference method, the dynamical properties of the bead trapped...
Saved in:
Published in: | Optical and quantum electronics 2020, Vol.52 (1), Article 51 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the general Langevin equations of motion for the polystyrene bead linked to the lambda-phage worm-like chain DNA molecule embedded in the fluid under the nonlinear optical tweezers is derived in 3D space. Using the finite difference method, the dynamical properties of the bead trapped by the nonlinear optical tweezers using a thin layer of Acid Blue 29 are numerically studied. Results in, the stretched length of the lambda-phage worm-like chain DNA molecule can be controlled in 3D space by finely tuning of the laser power. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-019-2164-6 |