Loading…

Proper holomorphic maps in harmonic map theory

We determine all proper holomorphic maps of balls B 2 → B 3 admitting a C 3 extension up to the boundary of B 2 and whose boundary values S 3 → S 5 are subelliptic harmonic maps (in the sense of Jost and Xu in Trans Am Math Soc 350(11):4633–4649,  1998 ). A new numerical CR invariant, the CR degree...

Full description

Saved in:
Bibliographic Details
Published in:Annali di matematica pura ed applicata 2015-10, Vol.194 (5), p.1469-1498
Main Authors: Barletta, Elisabetta, Dragomir, Sorin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We determine all proper holomorphic maps of balls B 2 → B 3 admitting a C 3 extension up to the boundary of B 2 and whose boundary values S 3 → S 5 are subelliptic harmonic maps (in the sense of Jost and Xu in Trans Am Math Soc 350(11):4633–4649,  1998 ). A new numerical CR invariant, the CR degree of a CR map of spheres S 2 n + 1 → S 2 N + 1 , is introduced and used to distinguish among the spherical equivalence classes in Faran’s list P ∗ ( 2 , 3 ) (cf. Faran in Invent Math 68:441–475,  1982 ). As an application, the boundary values ϕ of Alexander’s map Φ ∈ P ( 2 , 3 ) (cf. Alexander in Indiana Univ Math J 26:137–146,  1977 ) is shown to be homotopically nontrivial, as a map of { ( z , w ) ∈ S 3 : w + w ¯ > 0 } into S 5 \ S 3 .
ISSN:0373-3114
1618-1891
DOI:10.1007/s10231-014-0429-z