Loading…

MOEA/D with Random Partial Update Strategy

Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-01
Main Authors: Lavinas, Yuri, Aranha, Claus, Ladeira, Marcelo, Campelo, Felipe
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lavinas, Yuri
Aranha, Claus
Ladeira, Marcelo
Campelo, Felipe
description Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fraction of the population at any given iteration of the algorithm. In this work we investigate a new, simpler partial update strategy, in which a random subset of solutions is selected at every iteration. The performance of the MOEA/D using this new resource allocation approach is compared experimentally against that of the standard MOEA/D-DE and the MOEA/D with relative improvement-based resource allocation. The results indicate that using the MOEA/D with this new partial update strategy results in improved HV and IGD values, and a much higher proportion of non-dominated solutions, particularly as the number of updated solutions at every iteration is reduced.
doi_str_mv 10.48550/arxiv.2001.06980
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2343361977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343361977</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-b1aa047317236b126d39ccf1cfa3587a5aedd427a517c2782110323659e9ae983</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdBsNT-AHcBd0LS-5jJzCxLrQ-otNS6LreZiabUpiapj39vQFfnWxy-o9QVQqadMTCW5rv6zAgAM8i9gzM1IGZMnSa6UKO23QEA5ZaM4YG6eVrMJuPb5Kvq3pKVHEL9niyl6SrZJy_HIF1Mnrumx-vPpTovZd_G0T-Han03W08f0vni_nE6madiyKZbFAFtGS1xvkXKA_uiKLEohY2zYiSGoKkfaAuyjhCBe9X46CV6x0N1_Xd7bOqPU2y7za4-NYe-uCHWzDl6a_kXPIZAuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343361977</pqid></control><display><type>article</type><title>MOEA/D with Random Partial Update Strategy</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Lavinas, Yuri ; Aranha, Claus ; Ladeira, Marcelo ; Campelo, Felipe</creator><creatorcontrib>Lavinas, Yuri ; Aranha, Claus ; Ladeira, Marcelo ; Campelo, Felipe</creatorcontrib><description>Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fraction of the population at any given iteration of the algorithm. In this work we investigate a new, simpler partial update strategy, in which a random subset of solutions is selected at every iteration. The performance of the MOEA/D using this new resource allocation approach is compared experimentally against that of the standard MOEA/D-DE and the MOEA/D with relative improvement-based resource allocation. The results indicate that using the MOEA/D with this new partial update strategy results in improved HV and IGD values, and a much higher proportion of non-dominated solutions, particularly as the number of updated solutions at every iteration is reduced.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2001.06980</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Performance enhancement ; Resource allocation ; Strategy</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2343361977?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Lavinas, Yuri</creatorcontrib><creatorcontrib>Aranha, Claus</creatorcontrib><creatorcontrib>Ladeira, Marcelo</creatorcontrib><creatorcontrib>Campelo, Felipe</creatorcontrib><title>MOEA/D with Random Partial Update Strategy</title><title>arXiv.org</title><description>Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fraction of the population at any given iteration of the algorithm. In this work we investigate a new, simpler partial update strategy, in which a random subset of solutions is selected at every iteration. The performance of the MOEA/D using this new resource allocation approach is compared experimentally against that of the standard MOEA/D-DE and the MOEA/D with relative improvement-based resource allocation. The results indicate that using the MOEA/D with this new partial update strategy results in improved HV and IGD values, and a much higher proportion of non-dominated solutions, particularly as the number of updated solutions at every iteration is reduced.</description><subject>Algorithms</subject><subject>Performance enhancement</subject><subject>Resource allocation</subject><subject>Strategy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLw0AURgdBsNT-AHcBd0LS-5jJzCxLrQ-otNS6LreZiabUpiapj39vQFfnWxy-o9QVQqadMTCW5rv6zAgAM8i9gzM1IGZMnSa6UKO23QEA5ZaM4YG6eVrMJuPb5Kvq3pKVHEL9niyl6SrZJy_HIF1Mnrumx-vPpTovZd_G0T-Han03W08f0vni_nE6madiyKZbFAFtGS1xvkXKA_uiKLEohY2zYiSGoKkfaAuyjhCBe9X46CV6x0N1_Xd7bOqPU2y7za4-NYe-uCHWzDl6a_kXPIZAuw</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Lavinas, Yuri</creator><creator>Aranha, Claus</creator><creator>Ladeira, Marcelo</creator><creator>Campelo, Felipe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200120</creationdate><title>MOEA/D with Random Partial Update Strategy</title><author>Lavinas, Yuri ; Aranha, Claus ; Ladeira, Marcelo ; Campelo, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-b1aa047317236b126d39ccf1cfa3587a5aedd427a517c2782110323659e9ae983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Performance enhancement</topic><topic>Resource allocation</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Lavinas, Yuri</creatorcontrib><creatorcontrib>Aranha, Claus</creatorcontrib><creatorcontrib>Ladeira, Marcelo</creatorcontrib><creatorcontrib>Campelo, Felipe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavinas, Yuri</au><au>Aranha, Claus</au><au>Ladeira, Marcelo</au><au>Campelo, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOEA/D with Random Partial Update Strategy</atitle><jtitle>arXiv.org</jtitle><date>2020-01-20</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fraction of the population at any given iteration of the algorithm. In this work we investigate a new, simpler partial update strategy, in which a random subset of solutions is selected at every iteration. The performance of the MOEA/D using this new resource allocation approach is compared experimentally against that of the standard MOEA/D-DE and the MOEA/D with relative improvement-based resource allocation. The results indicate that using the MOEA/D with this new partial update strategy results in improved HV and IGD values, and a much higher proportion of non-dominated solutions, particularly as the number of updated solutions at every iteration is reduced.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2001.06980</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2343361977
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Performance enhancement
Resource allocation
Strategy
title MOEA/D with Random Partial Update Strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOEA/D%20with%20Random%20Partial%20Update%20Strategy&rft.jtitle=arXiv.org&rft.au=Lavinas,%20Yuri&rft.date=2020-01-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2001.06980&rft_dat=%3Cproquest%3E2343361977%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-b1aa047317236b126d39ccf1cfa3587a5aedd427a517c2782110323659e9ae983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343361977&rft_id=info:pmid/&rfr_iscdi=true