Loading…
MOEA/D with Random Partial Update Strategy
Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fr...
Saved in:
Published in: | arXiv.org 2020-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lavinas, Yuri Aranha, Claus Ladeira, Marcelo Campelo, Felipe |
description | Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fraction of the population at any given iteration of the algorithm. In this work we investigate a new, simpler partial update strategy, in which a random subset of solutions is selected at every iteration. The performance of the MOEA/D using this new resource allocation approach is compared experimentally against that of the standard MOEA/D-DE and the MOEA/D with relative improvement-based resource allocation. The results indicate that using the MOEA/D with this new partial update strategy results in improved HV and IGD values, and a much higher proportion of non-dominated solutions, particularly as the number of updated solutions at every iteration is reduced. |
doi_str_mv | 10.48550/arxiv.2001.06980 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2343361977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343361977</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-b1aa047317236b126d39ccf1cfa3587a5aedd427a517c2782110323659e9ae983</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdBsNT-AHcBd0LS-5jJzCxLrQ-otNS6LreZiabUpiapj39vQFfnWxy-o9QVQqadMTCW5rv6zAgAM8i9gzM1IGZMnSa6UKO23QEA5ZaM4YG6eVrMJuPb5Kvq3pKVHEL9niyl6SrZJy_HIF1Mnrumx-vPpTovZd_G0T-Han03W08f0vni_nE6madiyKZbFAFtGS1xvkXKA_uiKLEohY2zYiSGoKkfaAuyjhCBe9X46CV6x0N1_Xd7bOqPU2y7za4-NYe-uCHWzDl6a_kXPIZAuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343361977</pqid></control><display><type>article</type><title>MOEA/D with Random Partial Update Strategy</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Lavinas, Yuri ; Aranha, Claus ; Ladeira, Marcelo ; Campelo, Felipe</creator><creatorcontrib>Lavinas, Yuri ; Aranha, Claus ; Ladeira, Marcelo ; Campelo, Felipe</creatorcontrib><description>Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fraction of the population at any given iteration of the algorithm. In this work we investigate a new, simpler partial update strategy, in which a random subset of solutions is selected at every iteration. The performance of the MOEA/D using this new resource allocation approach is compared experimentally against that of the standard MOEA/D-DE and the MOEA/D with relative improvement-based resource allocation. The results indicate that using the MOEA/D with this new partial update strategy results in improved HV and IGD values, and a much higher proportion of non-dominated solutions, particularly as the number of updated solutions at every iteration is reduced.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2001.06980</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Performance enhancement ; Resource allocation ; Strategy</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2343361977?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Lavinas, Yuri</creatorcontrib><creatorcontrib>Aranha, Claus</creatorcontrib><creatorcontrib>Ladeira, Marcelo</creatorcontrib><creatorcontrib>Campelo, Felipe</creatorcontrib><title>MOEA/D with Random Partial Update Strategy</title><title>arXiv.org</title><description>Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fraction of the population at any given iteration of the algorithm. In this work we investigate a new, simpler partial update strategy, in which a random subset of solutions is selected at every iteration. The performance of the MOEA/D using this new resource allocation approach is compared experimentally against that of the standard MOEA/D-DE and the MOEA/D with relative improvement-based resource allocation. The results indicate that using the MOEA/D with this new partial update strategy results in improved HV and IGD values, and a much higher proportion of non-dominated solutions, particularly as the number of updated solutions at every iteration is reduced.</description><subject>Algorithms</subject><subject>Performance enhancement</subject><subject>Resource allocation</subject><subject>Strategy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLw0AURgdBsNT-AHcBd0LS-5jJzCxLrQ-otNS6LreZiabUpiapj39vQFfnWxy-o9QVQqadMTCW5rv6zAgAM8i9gzM1IGZMnSa6UKO23QEA5ZaM4YG6eVrMJuPb5Kvq3pKVHEL9niyl6SrZJy_HIF1Mnrumx-vPpTovZd_G0T-Han03W08f0vni_nE6madiyKZbFAFtGS1xvkXKA_uiKLEohY2zYiSGoKkfaAuyjhCBe9X46CV6x0N1_Xd7bOqPU2y7za4-NYe-uCHWzDl6a_kXPIZAuw</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Lavinas, Yuri</creator><creator>Aranha, Claus</creator><creator>Ladeira, Marcelo</creator><creator>Campelo, Felipe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200120</creationdate><title>MOEA/D with Random Partial Update Strategy</title><author>Lavinas, Yuri ; Aranha, Claus ; Ladeira, Marcelo ; Campelo, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-b1aa047317236b126d39ccf1cfa3587a5aedd427a517c2782110323659e9ae983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Performance enhancement</topic><topic>Resource allocation</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Lavinas, Yuri</creatorcontrib><creatorcontrib>Aranha, Claus</creatorcontrib><creatorcontrib>Ladeira, Marcelo</creatorcontrib><creatorcontrib>Campelo, Felipe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavinas, Yuri</au><au>Aranha, Claus</au><au>Ladeira, Marcelo</au><au>Campelo, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOEA/D with Random Partial Update Strategy</atitle><jtitle>arXiv.org</jtitle><date>2020-01-20</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Recent studies on resource allocation suggest that some subproblems are more important than others in the context of the MOEA/D, and that focusing on the most relevant ones can consistently improve the performance of that algorithm. These studies share the common characteristic of updating only a fraction of the population at any given iteration of the algorithm. In this work we investigate a new, simpler partial update strategy, in which a random subset of solutions is selected at every iteration. The performance of the MOEA/D using this new resource allocation approach is compared experimentally against that of the standard MOEA/D-DE and the MOEA/D with relative improvement-based resource allocation. The results indicate that using the MOEA/D with this new partial update strategy results in improved HV and IGD values, and a much higher proportion of non-dominated solutions, particularly as the number of updated solutions at every iteration is reduced.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2001.06980</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2343361977 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Performance enhancement Resource allocation Strategy |
title | MOEA/D with Random Partial Update Strategy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOEA/D%20with%20Random%20Partial%20Update%20Strategy&rft.jtitle=arXiv.org&rft.au=Lavinas,%20Yuri&rft.date=2020-01-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2001.06980&rft_dat=%3Cproquest%3E2343361977%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-b1aa047317236b126d39ccf1cfa3587a5aedd427a517c2782110323659e9ae983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343361977&rft_id=info:pmid/&rfr_iscdi=true |