Loading…

Distributionally Robust Bayesian Quadrature Optimization

Bayesian quadrature optimization (BQO) maximizes the expectation of an expensive black-box integrand taken over a known probability distribution. In this work, we study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-01
Main Authors: Thanh Tang Nguyen, Gupta, Sunil, Ha, Huong, Rana, Santu, Venkatesh, Svetha
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Thanh Tang Nguyen
Gupta, Sunil
Ha, Huong
Rana, Santu
Venkatesh, Svetha
description Bayesian quadrature optimization (BQO) maximizes the expectation of an expensive black-box integrand taken over a known probability distribution. In this work, we study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples. A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set. Though Monte Carlo estimate is unbiased, it has high variance given a small set of samples; thus can result in a spurious objective function. We adopt the distributionally robust optimization perspective to this problem by maximizing the expected objective under the most adversarial distribution. In particular, we propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose. We demonstrate the empirical effectiveness of our proposed framework in synthetic and real-world problems, and characterize its theoretical convergence via Bayesian regret.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2343363658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343363658</sourcerecordid><originalsourceid>FETCH-proquest_journals_23433636583</originalsourceid><addsrcrecordid>eNqNzL0KwjAUQOEgCBbtOwScCzG3iZn9w00U93KLEVJiU3OToT69Cj6A01k-zoQVEmBVmVrKGSuJOiGE1GupFBTM7Byl6NqcXOjR-5FfQpsp8Q2Olhz2_JzxFjHlaPlpSO7hXvi1Cza9oydb_jpny8P-uj1WQwzPbCk1Xcjxs6RGQg2gQSsD_6k3vYk3FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343363658</pqid></control><display><type>article</type><title>Distributionally Robust Bayesian Quadrature Optimization</title><source>Publicly Available Content Database</source><creator>Thanh Tang Nguyen ; Gupta, Sunil ; Ha, Huong ; Rana, Santu ; Venkatesh, Svetha</creator><creatorcontrib>Thanh Tang Nguyen ; Gupta, Sunil ; Ha, Huong ; Rana, Santu ; Venkatesh, Svetha</creatorcontrib><description>Bayesian quadrature optimization (BQO) maximizes the expectation of an expensive black-box integrand taken over a known probability distribution. In this work, we study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples. A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set. Though Monte Carlo estimate is unbiased, it has high variance given a small set of samples; thus can result in a spurious objective function. We adopt the distributionally robust optimization perspective to this problem by maximizing the expected objective under the most adversarial distribution. In particular, we propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose. We demonstrate the empirical effectiveness of our proposed framework in synthetic and real-world problems, and characterize its theoretical convergence via Bayesian regret.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Decision theory ; Optimization ; Probability distribution ; Quadratures ; Robustness</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2343363658?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Thanh Tang Nguyen</creatorcontrib><creatorcontrib>Gupta, Sunil</creatorcontrib><creatorcontrib>Ha, Huong</creatorcontrib><creatorcontrib>Rana, Santu</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><title>Distributionally Robust Bayesian Quadrature Optimization</title><title>arXiv.org</title><description>Bayesian quadrature optimization (BQO) maximizes the expectation of an expensive black-box integrand taken over a known probability distribution. In this work, we study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples. A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set. Though Monte Carlo estimate is unbiased, it has high variance given a small set of samples; thus can result in a spurious objective function. We adopt the distributionally robust optimization perspective to this problem by maximizing the expected objective under the most adversarial distribution. In particular, we propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose. We demonstrate the empirical effectiveness of our proposed framework in synthetic and real-world problems, and characterize its theoretical convergence via Bayesian regret.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Decision theory</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Quadratures</subject><subject>Robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzL0KwjAUQOEgCBbtOwScCzG3iZn9w00U93KLEVJiU3OToT69Cj6A01k-zoQVEmBVmVrKGSuJOiGE1GupFBTM7Byl6NqcXOjR-5FfQpsp8Q2Olhz2_JzxFjHlaPlpSO7hXvi1Cza9oydb_jpny8P-uj1WQwzPbCk1Xcjxs6RGQg2gQSsD_6k3vYk3FQ</recordid><startdate>20200119</startdate><enddate>20200119</enddate><creator>Thanh Tang Nguyen</creator><creator>Gupta, Sunil</creator><creator>Ha, Huong</creator><creator>Rana, Santu</creator><creator>Venkatesh, Svetha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200119</creationdate><title>Distributionally Robust Bayesian Quadrature Optimization</title><author>Thanh Tang Nguyen ; Gupta, Sunil ; Ha, Huong ; Rana, Santu ; Venkatesh, Svetha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23433636583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Decision theory</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Quadratures</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Thanh Tang Nguyen</creatorcontrib><creatorcontrib>Gupta, Sunil</creatorcontrib><creatorcontrib>Ha, Huong</creatorcontrib><creatorcontrib>Rana, Santu</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanh Tang Nguyen</au><au>Gupta, Sunil</au><au>Ha, Huong</au><au>Rana, Santu</au><au>Venkatesh, Svetha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Distributionally Robust Bayesian Quadrature Optimization</atitle><jtitle>arXiv.org</jtitle><date>2020-01-19</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Bayesian quadrature optimization (BQO) maximizes the expectation of an expensive black-box integrand taken over a known probability distribution. In this work, we study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples. A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set. Though Monte Carlo estimate is unbiased, it has high variance given a small set of samples; thus can result in a spurious objective function. We adopt the distributionally robust optimization perspective to this problem by maximizing the expected objective under the most adversarial distribution. In particular, we propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose. We demonstrate the empirical effectiveness of our proposed framework in synthetic and real-world problems, and characterize its theoretical convergence via Bayesian regret.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2343363658
source Publicly Available Content Database
subjects Algorithms
Bayesian analysis
Decision theory
Optimization
Probability distribution
Quadratures
Robustness
title Distributionally Robust Bayesian Quadrature Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Distributionally%20Robust%20Bayesian%20Quadrature%20Optimization&rft.jtitle=arXiv.org&rft.au=Thanh%20Tang%20Nguyen&rft.date=2020-01-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2343363658%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23433636583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343363658&rft_id=info:pmid/&rfr_iscdi=true