Loading…
Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation
Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity o...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2020, Vol.31 (1), p.480-487 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23 |
container_end_page | 487 |
container_issue | 1 |
container_start_page | 480 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Cui, Ruoying Tang, Ke Zhu, Dachuan Yue, Cheng Yang, Lingxiang |
description | Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm
3+
-doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm
3+
-doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials. |
doi_str_mv | 10.1007/s10854-019-02552-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343532300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343532300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gKuASxm982qapRRfKHVRBXdDOrnTpiSZOJNg6693bAR3ri4cvnMufIScM7hiAOl1YDBVkgLLKHClON0ekBFTqaByyt8PyQgylVKpOD8mJyFsAGAixXREVotaXNLCtVgkT_P5IrHovcMKTedLkxj0eV2akHyW3TrBZp03JpLt2nWu6uuywWAwRslyl7Suyn35lXela6gtsSpo7Yq-2gen5MjmVcCz3zsmb3e3r7MH-vxy_zi7eaaGy6yjTBoppVHZZAlqkrEpCptmzIAyjDNreZYjALMFM0uBHCVPGS4jpUQhheViTC6G3da7jx5Dpzeu9018qbmQEeMCIFJ8oIx3IXi0uvVlnfudZqB_hOpBqI5C9V6o3saSGEohws0K_d_0P61vODd6ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343532300</pqid></control><display><type>article</type><title>Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation</title><source>Springer Nature</source><creator>Cui, Ruoying ; Tang, Ke ; Zhu, Dachuan ; Yue, Cheng ; Yang, Lingxiang</creator><creatorcontrib>Cui, Ruoying ; Tang, Ke ; Zhu, Dachuan ; Yue, Cheng ; Yang, Lingxiang</creatorcontrib><description>Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm
3+
-doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm
3+
-doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02552-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electric fields ; Electric properties ; Electron transitions ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Grain size ; Luminous intensity ; Materials Science ; Mathematical analysis ; Matrix methods ; Metal ions ; Microstructure ; Modulation ; Optical and Electronic Materials ; Optical properties ; Organic chemistry ; Phase composition ; Phosphors ; Photoluminescence ; Point defects ; Polarization ; Polyvinyl alcohol ; Potassium ; Rare earth elements ; Raw materials ; Scanning electron microscopy ; Symmetry</subject><ispartof>Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.480-487</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23</citedby><cites>FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23</cites><orcidid>0000-0002-9133-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cui, Ruoying</creatorcontrib><creatorcontrib>Tang, Ke</creatorcontrib><creatorcontrib>Zhu, Dachuan</creatorcontrib><creatorcontrib>Yue, Cheng</creatorcontrib><creatorcontrib>Yang, Lingxiang</creatorcontrib><title>Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm
3+
-doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm
3+
-doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials.</description><subject>Asymmetry</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electron transitions</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Grain size</subject><subject>Luminous intensity</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Metal ions</subject><subject>Microstructure</subject><subject>Modulation</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Phase composition</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>Polarization</subject><subject>Polyvinyl alcohol</subject><subject>Potassium</subject><subject>Rare earth elements</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Symmetry</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFb_gKuASxm982qapRRfKHVRBXdDOrnTpiSZOJNg6693bAR3ri4cvnMufIScM7hiAOl1YDBVkgLLKHClON0ekBFTqaByyt8PyQgylVKpOD8mJyFsAGAixXREVotaXNLCtVgkT_P5IrHovcMKTedLkxj0eV2akHyW3TrBZp03JpLt2nWu6uuywWAwRslyl7Suyn35lXela6gtsSpo7Yq-2gen5MjmVcCz3zsmb3e3r7MH-vxy_zi7eaaGy6yjTBoppVHZZAlqkrEpCptmzIAyjDNreZYjALMFM0uBHCVPGS4jpUQhheViTC6G3da7jx5Dpzeu9018qbmQEeMCIFJ8oIx3IXi0uvVlnfudZqB_hOpBqI5C9V6o3saSGEohws0K_d_0P61vODd6ag</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cui, Ruoying</creator><creator>Tang, Ke</creator><creator>Zhu, Dachuan</creator><creator>Yue, Cheng</creator><creator>Yang, Lingxiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9133-3729</orcidid></search><sort><creationdate>2020</creationdate><title>Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation</title><author>Cui, Ruoying ; Tang, Ke ; Zhu, Dachuan ; Yue, Cheng ; Yang, Lingxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymmetry</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electron transitions</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Grain size</topic><topic>Luminous intensity</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Metal ions</topic><topic>Microstructure</topic><topic>Modulation</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Phase composition</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>Polarization</topic><topic>Polyvinyl alcohol</topic><topic>Potassium</topic><topic>Rare earth elements</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Ruoying</creatorcontrib><creatorcontrib>Tang, Ke</creatorcontrib><creatorcontrib>Zhu, Dachuan</creatorcontrib><creatorcontrib>Yue, Cheng</creatorcontrib><creatorcontrib>Yang, Lingxiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Ruoying</au><au>Tang, Ke</au><au>Zhu, Dachuan</au><au>Yue, Cheng</au><au>Yang, Lingxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>480</spage><epage>487</epage><pages>480-487</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm
3+
-doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm
3+
-doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02552-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9133-3729</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.480-487 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2343532300 |
source | Springer Nature |
subjects | Asymmetry Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Electric fields Electric properties Electron transitions Ferroelectric materials Ferroelectricity Ferroelectrics Grain size Luminous intensity Materials Science Mathematical analysis Matrix methods Metal ions Microstructure Modulation Optical and Electronic Materials Optical properties Organic chemistry Phase composition Phosphors Photoluminescence Point defects Polarization Polyvinyl alcohol Potassium Rare earth elements Raw materials Scanning electron microscopy Symmetry |
title | Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sm3+-doped%20KNNS%20ferroelectric%20ceramics%20with%20enhanced%20photoluminescence%20by%20polarization-field-modulation&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Cui,%20Ruoying&rft.date=2020&rft.volume=31&rft.issue=1&rft.spage=480&rft.epage=487&rft.pages=480-487&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02552-x&rft_dat=%3Cproquest_cross%3E2343532300%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343532300&rft_id=info:pmid/&rfr_iscdi=true |