Loading…

Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation

Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2020, Vol.31 (1), p.480-487
Main Authors: Cui, Ruoying, Tang, Ke, Zhu, Dachuan, Yue, Cheng, Yang, Lingxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23
cites cdi_FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23
container_end_page 487
container_issue 1
container_start_page 480
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Cui, Ruoying
Tang, Ke
Zhu, Dachuan
Yue, Cheng
Yang, Lingxiang
description Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm 3+ -doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm 3+ -doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials.
doi_str_mv 10.1007/s10854-019-02552-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343532300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343532300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gKuASxm982qapRRfKHVRBXdDOrnTpiSZOJNg6693bAR3ri4cvnMufIScM7hiAOl1YDBVkgLLKHClON0ekBFTqaByyt8PyQgylVKpOD8mJyFsAGAixXREVotaXNLCtVgkT_P5IrHovcMKTedLkxj0eV2akHyW3TrBZp03JpLt2nWu6uuywWAwRslyl7Suyn35lXela6gtsSpo7Yq-2gen5MjmVcCz3zsmb3e3r7MH-vxy_zi7eaaGy6yjTBoppVHZZAlqkrEpCptmzIAyjDNreZYjALMFM0uBHCVPGS4jpUQhheViTC6G3da7jx5Dpzeu9018qbmQEeMCIFJ8oIx3IXi0uvVlnfudZqB_hOpBqI5C9V6o3saSGEohws0K_d_0P61vODd6ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343532300</pqid></control><display><type>article</type><title>Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation</title><source>Springer Nature</source><creator>Cui, Ruoying ; Tang, Ke ; Zhu, Dachuan ; Yue, Cheng ; Yang, Lingxiang</creator><creatorcontrib>Cui, Ruoying ; Tang, Ke ; Zhu, Dachuan ; Yue, Cheng ; Yang, Lingxiang</creatorcontrib><description>Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm 3+ -doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm 3+ -doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02552-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electric fields ; Electric properties ; Electron transitions ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Grain size ; Luminous intensity ; Materials Science ; Mathematical analysis ; Matrix methods ; Metal ions ; Microstructure ; Modulation ; Optical and Electronic Materials ; Optical properties ; Organic chemistry ; Phase composition ; Phosphors ; Photoluminescence ; Point defects ; Polarization ; Polyvinyl alcohol ; Potassium ; Rare earth elements ; Raw materials ; Scanning electron microscopy ; Symmetry</subject><ispartof>Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.480-487</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23</citedby><cites>FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23</cites><orcidid>0000-0002-9133-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cui, Ruoying</creatorcontrib><creatorcontrib>Tang, Ke</creatorcontrib><creatorcontrib>Zhu, Dachuan</creatorcontrib><creatorcontrib>Yue, Cheng</creatorcontrib><creatorcontrib>Yang, Lingxiang</creatorcontrib><title>Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm 3+ -doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm 3+ -doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials.</description><subject>Asymmetry</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electron transitions</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Grain size</subject><subject>Luminous intensity</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Metal ions</subject><subject>Microstructure</subject><subject>Modulation</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Phase composition</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>Polarization</subject><subject>Polyvinyl alcohol</subject><subject>Potassium</subject><subject>Rare earth elements</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Symmetry</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFb_gKuASxm982qapRRfKHVRBXdDOrnTpiSZOJNg6693bAR3ri4cvnMufIScM7hiAOl1YDBVkgLLKHClON0ekBFTqaByyt8PyQgylVKpOD8mJyFsAGAixXREVotaXNLCtVgkT_P5IrHovcMKTedLkxj0eV2akHyW3TrBZp03JpLt2nWu6uuywWAwRslyl7Suyn35lXela6gtsSpo7Yq-2gen5MjmVcCz3zsmb3e3r7MH-vxy_zi7eaaGy6yjTBoppVHZZAlqkrEpCptmzIAyjDNreZYjALMFM0uBHCVPGS4jpUQhheViTC6G3da7jx5Dpzeu9018qbmQEeMCIFJ8oIx3IXi0uvVlnfudZqB_hOpBqI5C9V6o3saSGEohws0K_d_0P61vODd6ag</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cui, Ruoying</creator><creator>Tang, Ke</creator><creator>Zhu, Dachuan</creator><creator>Yue, Cheng</creator><creator>Yang, Lingxiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9133-3729</orcidid></search><sort><creationdate>2020</creationdate><title>Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation</title><author>Cui, Ruoying ; Tang, Ke ; Zhu, Dachuan ; Yue, Cheng ; Yang, Lingxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymmetry</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electron transitions</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Grain size</topic><topic>Luminous intensity</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Metal ions</topic><topic>Microstructure</topic><topic>Modulation</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Phase composition</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>Polarization</topic><topic>Polyvinyl alcohol</topic><topic>Potassium</topic><topic>Rare earth elements</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Ruoying</creatorcontrib><creatorcontrib>Tang, Ke</creatorcontrib><creatorcontrib>Zhu, Dachuan</creatorcontrib><creatorcontrib>Yue, Cheng</creatorcontrib><creatorcontrib>Yang, Lingxiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Ruoying</au><au>Tang, Ke</au><au>Zhu, Dachuan</au><au>Yue, Cheng</au><au>Yang, Lingxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>480</spage><epage>487</epage><pages>480-487</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Multi-functional luminescent ceramics on account of rare earth ion doped ferroelectric have attracted significant attention because of their great potential for application, but the luminous intensity is insufficient compared with that of traditional phosphors. In this work, the luminous intensity of Sm 3+ -doped KNNS ceramic has been enhanced by polarization as one non-chemical method. The results show that the photoluminescence intensity of the 0.75 mol% Sm 3+ -doped polarized ceramic has increased by about 10%, compared to that of the unpolarized samples, and thermal quenching appears at a higher temperature. Meanwhile, a detailed study on the phase composition, microstructure, optical performance, and polarization effect of the sample has been carried out, suggesting the enhanced photoluminescence may originate from symmetry reduction of lattice matrix by electric field polarization, which fortifies the tendency of electron transition. Hence, polarization-field-modulation is expected to blaze a trail in the synthesis of luminescent materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02552-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9133-3729</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020, Vol.31 (1), p.480-487
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2343532300
source Springer Nature
subjects Asymmetry
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electric fields
Electric properties
Electron transitions
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Grain size
Luminous intensity
Materials Science
Mathematical analysis
Matrix methods
Metal ions
Microstructure
Modulation
Optical and Electronic Materials
Optical properties
Organic chemistry
Phase composition
Phosphors
Photoluminescence
Point defects
Polarization
Polyvinyl alcohol
Potassium
Rare earth elements
Raw materials
Scanning electron microscopy
Symmetry
title Sm3+-doped KNNS ferroelectric ceramics with enhanced photoluminescence by polarization-field-modulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sm3+-doped%20KNNS%20ferroelectric%20ceramics%20with%20enhanced%20photoluminescence%20by%20polarization-field-modulation&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Cui,%20Ruoying&rft.date=2020&rft.volume=31&rft.issue=1&rft.spage=480&rft.epage=487&rft.pages=480-487&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02552-x&rft_dat=%3Cproquest_cross%3E2343532300%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-14c444c596b056918e3f791c05c121ff29ae001fd1cb3e2e4271eb8e353d43f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343532300&rft_id=info:pmid/&rfr_iscdi=true