Loading…

Flexible chirp-free probe pulse amplification for kHz fs/ps rotational CARS

The sensitivity of high-repetition-rate hybrid femtosecond/picosecond (fs/ps) rotational coherent anti-Stokes Raman scattering (RCARS) is strongly influenced by the energy available for the ps probe pulse. In this work, a high-energy ps probe pulse that is time-synchronized with the fs pump/Stokes p...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2020-01, Vol.45 (2), p.503
Main Authors: Rahman, K. Arafat, Braun, Erik L., Slipchenko, Mikhail N., Roy, Sukesh, Meyer, Terrence R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sensitivity of high-repetition-rate hybrid femtosecond/picosecond (fs/ps) rotational coherent anti-Stokes Raman scattering (RCARS) is strongly influenced by the energy available for the ps probe pulse. In this work, a high-energy ps probe pulse that is time-synchronized with the fs pump/Stokes pulse is achieved by using a diode-pumped Nd:YAG amplifier seeded at 1064.4 nm by the output of a fs optical parametric amplifier. Nearly transform-limited, 10 ps pulses with up to 800 µJ/pulse and a bandwidth of 1.9 c m − 1 were generated at the second harmonic 532.2 nm and used for kilohertz-rate fs/ps RCARS thermometry up to 2400 K with accuracies of 1–2%. We furthermore demonstrate the amplification of variable pulsewidths for flexible single-mode (chirp-free) RCARS signal generation.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.382033