Loading…
Fabrication and characterization of conductive silk fibroin–gold nanocomposite films
This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu III Cl 4 ·H 2 O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural bi...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2020, Vol.31 (1), p.249-264 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research proposes a one-step fabrication of novel conducting silk fibroin (SF) nanocomposites (NCs) in which in situ generation of nanoparticles from their precursor are achieved. Here, the gold salt (HAu
III
Cl
4
·H
2
O) is reduced to gold nanoparticles (AuNPs) using SF, a renewable natural biopolymer, and SF–AuNPs NCs are developed via solution casting method. The optical absorption spectra recorded using the UV–Visible spectroscopy (UV–Vis) witnesses the generation of anisotropic particles by showing two absorption bands. Also, the calculated optical band gap energy (E
g
) value decreases from 4.2 to 2.4 eV with the increasing concentration of AuNPs. The X-ray diffraction (XRD) profile of the NCs confirms the presence of AuNPs. The scanning electron microscopy (SEM) micrographs clearly admit the successful formation of AuNPs in the host polymer matrix with homogeneous dispersion. The size and evolution of the different shaped AuNPs are confirmed by the transmission electron microscopy (TEM) study. An increase in DC conductivity from 1.48 × 10
−9
to 7.12 × 10
−9
S/cm and decrease in frequency-dependent dielectric constant are observed with the increase in AuNPs. The obtained result suggests that the insulating behaviour of the SF can be effectively changed into a conducting nature with the in situ creation of AuNPs in the SF matrix. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-019-02485-5 |