Loading…
Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices
We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution...
Saved in:
Published in: | Journal of low temperature physics 2020-02, Vol.198 (3-4), p.190-208 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73 |
container_end_page | 208 |
container_issue | 3-4 |
container_start_page | 190 |
container_title | Journal of low temperature physics |
container_volume | 198 |
creator | Rodríguez-López, Omar Abel Solís, M. A. |
description | We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution for the density profile, as well as for the phase of the wave function in terms of the Jacobi elliptic functions, and the incomplete elliptic integrals of the first, second and third kind. Then, we determine numerically the energy of the ground state, the chemical potential and the compressibility of the condensate and show their dependence on the potential height, as well as on the interaction between the bosons. We show the appearance of loops in the energy band spectrum of the system for strong enough interactions, which appear at the edges of the first Brillouin zone for odd bands and at the center for even bands. We apply our model to predict the energy band structure of the Bose gas in an optical lattice with subwavelength spatial structure. To discuss the density range of the validity of the GPE predictions, we calculate the ground-state energies of the free Bose gas using the GPE, which we compare with the Lieb–Liniger exact energies. |
doi_str_mv | 10.1007/s10909-019-02276-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344260382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344260382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Qy6W42F0HqXyhU1J7DNJutW9bdmmwtfnujK3jzMMww894b-DF2KuFcAuiLKMGAESBTIepc5HtsJDOthFaZ3mcjSGuBaOQhO4pxDQCmyNWIXT76UHdl7fii6QO1FEK3409dGTlFLq_583a5ow_f-HbVv_L5pq8dNXxGfRp8PGYHFTXRn_z2MVvc3rxM78VsfvcwvZoJp6TpRWlI-UwaZaRbQuGAJBYSKkNSZ6qoytJh5ZdUOa3Qeco8ISqt8hIn6azVmJ0NuZvQvW997O2624Y2vbSoJhPMQRWYVDioXOhiDL6ym1C_Ufi0Euw3JztwsomT_eFk82RSgykmcbvy4S_6H9cXnLFqNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344260382</pqid></control><display><type>article</type><title>Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices</title><source>Springer Nature</source><creator>Rodríguez-López, Omar Abel ; Solís, M. A.</creator><creatorcontrib>Rodríguez-López, Omar Abel ; Solís, M. A.</creatorcontrib><description>We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution for the density profile, as well as for the phase of the wave function in terms of the Jacobi elliptic functions, and the incomplete elliptic integrals of the first, second and third kind. Then, we determine numerically the energy of the ground state, the chemical potential and the compressibility of the condensate and show their dependence on the potential height, as well as on the interaction between the bosons. We show the appearance of loops in the energy band spectrum of the system for strong enough interactions, which appear at the edges of the first Brillouin zone for odd bands and at the center for even bands. We apply our model to predict the energy band structure of the Bose gas in an optical lattice with subwavelength spatial structure. To discuss the density range of the validity of the GPE predictions, we calculate the ground-state energies of the free Bose gas using the GPE, which we compare with the Lieb–Liniger exact energies.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-019-02276-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banded structure ; Bloch waves ; Bosons ; Brillouin zones ; Characterization and Evaluation of Materials ; Chemical potential ; Compressibility ; Condensed Matter Physics ; Density ; Elliptic functions ; Exact solutions ; Low temperature physics ; Magnetic Materials ; Magnetism ; Optical lattices ; Optical properties ; Organic chemistry ; Periodic structures ; Physics ; Physics and Astronomy ; Wave functions</subject><ispartof>Journal of low temperature physics, 2020-02, Vol.198 (3-4), p.190-208</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73</citedby><cites>FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73</cites><orcidid>0000-0002-3635-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rodríguez-López, Omar Abel</creatorcontrib><creatorcontrib>Solís, M. A.</creatorcontrib><title>Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution for the density profile, as well as for the phase of the wave function in terms of the Jacobi elliptic functions, and the incomplete elliptic integrals of the first, second and third kind. Then, we determine numerically the energy of the ground state, the chemical potential and the compressibility of the condensate and show their dependence on the potential height, as well as on the interaction between the bosons. We show the appearance of loops in the energy band spectrum of the system for strong enough interactions, which appear at the edges of the first Brillouin zone for odd bands and at the center for even bands. We apply our model to predict the energy band structure of the Bose gas in an optical lattice with subwavelength spatial structure. To discuss the density range of the validity of the GPE predictions, we calculate the ground-state energies of the free Bose gas using the GPE, which we compare with the Lieb–Liniger exact energies.</description><subject>Banded structure</subject><subject>Bloch waves</subject><subject>Bosons</subject><subject>Brillouin zones</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical potential</subject><subject>Compressibility</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Elliptic functions</subject><subject>Exact solutions</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Optical lattices</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Periodic structures</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Wave functions</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Qy6W42F0HqXyhU1J7DNJutW9bdmmwtfnujK3jzMMww894b-DF2KuFcAuiLKMGAESBTIepc5HtsJDOthFaZ3mcjSGuBaOQhO4pxDQCmyNWIXT76UHdl7fii6QO1FEK3409dGTlFLq_583a5ow_f-HbVv_L5pq8dNXxGfRp8PGYHFTXRn_z2MVvc3rxM78VsfvcwvZoJp6TpRWlI-UwaZaRbQuGAJBYSKkNSZ6qoytJh5ZdUOa3Qeco8ISqt8hIn6azVmJ0NuZvQvW997O2624Y2vbSoJhPMQRWYVDioXOhiDL6ym1C_Ufi0Euw3JztwsomT_eFk82RSgykmcbvy4S_6H9cXnLFqNA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Rodríguez-López, Omar Abel</creator><creator>Solís, M. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3635-9248</orcidid></search><sort><creationdate>20200201</creationdate><title>Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices</title><author>Rodríguez-López, Omar Abel ; Solís, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Banded structure</topic><topic>Bloch waves</topic><topic>Bosons</topic><topic>Brillouin zones</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical potential</topic><topic>Compressibility</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Elliptic functions</topic><topic>Exact solutions</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Optical lattices</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Periodic structures</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-López, Omar Abel</creatorcontrib><creatorcontrib>Solís, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-López, Omar Abel</au><au>Solís, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>198</volume><issue>3-4</issue><spage>190</spage><epage>208</epage><pages>190-208</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution for the density profile, as well as for the phase of the wave function in terms of the Jacobi elliptic functions, and the incomplete elliptic integrals of the first, second and third kind. Then, we determine numerically the energy of the ground state, the chemical potential and the compressibility of the condensate and show their dependence on the potential height, as well as on the interaction between the bosons. We show the appearance of loops in the energy band spectrum of the system for strong enough interactions, which appear at the edges of the first Brillouin zone for odd bands and at the center for even bands. We apply our model to predict the energy band structure of the Bose gas in an optical lattice with subwavelength spatial structure. To discuss the density range of the validity of the GPE predictions, we calculate the ground-state energies of the free Bose gas using the GPE, which we compare with the Lieb–Liniger exact energies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-019-02276-6</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3635-9248</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2020-02, Vol.198 (3-4), p.190-208 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_journals_2344260382 |
source | Springer Nature |
subjects | Banded structure Bloch waves Bosons Brillouin zones Characterization and Evaluation of Materials Chemical potential Compressibility Condensed Matter Physics Density Elliptic functions Exact solutions Low temperature physics Magnetic Materials Magnetism Optical lattices Optical properties Organic chemistry Periodic structures Physics Physics and Astronomy Wave functions |
title | Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Ultranarrow%20Rods%20as%201D%20Subwavelength%20Optical%20Lattices&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Rodr%C3%ADguez-L%C3%B3pez,%20Omar%20Abel&rft.date=2020-02-01&rft.volume=198&rft.issue=3-4&rft.spage=190&rft.epage=208&rft.pages=190-208&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-019-02276-6&rft_dat=%3Cproquest_cross%3E2344260382%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344260382&rft_id=info:pmid/&rfr_iscdi=true |