Loading…

Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices

We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution...

Full description

Saved in:
Bibliographic Details
Published in:Journal of low temperature physics 2020-02, Vol.198 (3-4), p.190-208
Main Authors: Rodríguez-López, Omar Abel, Solís, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73
cites cdi_FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73
container_end_page 208
container_issue 3-4
container_start_page 190
container_title Journal of low temperature physics
container_volume 198
creator Rodríguez-López, Omar Abel
Solís, M. A.
description We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution for the density profile, as well as for the phase of the wave function in terms of the Jacobi elliptic functions, and the incomplete elliptic integrals of the first, second and third kind. Then, we determine numerically the energy of the ground state, the chemical potential and the compressibility of the condensate and show their dependence on the potential height, as well as on the interaction between the bosons. We show the appearance of loops in the energy band spectrum of the system for strong enough interactions, which appear at the edges of the first Brillouin zone for odd bands and at the center for even bands. We apply our model to predict the energy band structure of the Bose gas in an optical lattice with subwavelength spatial structure. To discuss the density range of the validity of the GPE predictions, we calculate the ground-state energies of the free Bose gas using the GPE, which we compare with the Lieb–Liniger exact energies.
doi_str_mv 10.1007/s10909-019-02276-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344260382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344260382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Qy6W42F0HqXyhU1J7DNJutW9bdmmwtfnujK3jzMMww894b-DF2KuFcAuiLKMGAESBTIepc5HtsJDOthFaZ3mcjSGuBaOQhO4pxDQCmyNWIXT76UHdl7fii6QO1FEK3409dGTlFLq_583a5ow_f-HbVv_L5pq8dNXxGfRp8PGYHFTXRn_z2MVvc3rxM78VsfvcwvZoJp6TpRWlI-UwaZaRbQuGAJBYSKkNSZ6qoytJh5ZdUOa3Qeco8ISqt8hIn6azVmJ0NuZvQvW997O2624Y2vbSoJhPMQRWYVDioXOhiDL6ym1C_Ufi0Euw3JztwsomT_eFk82RSgykmcbvy4S_6H9cXnLFqNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344260382</pqid></control><display><type>article</type><title>Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices</title><source>Springer Nature</source><creator>Rodríguez-López, Omar Abel ; Solís, M. A.</creator><creatorcontrib>Rodríguez-López, Omar Abel ; Solís, M. A.</creatorcontrib><description>We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution for the density profile, as well as for the phase of the wave function in terms of the Jacobi elliptic functions, and the incomplete elliptic integrals of the first, second and third kind. Then, we determine numerically the energy of the ground state, the chemical potential and the compressibility of the condensate and show their dependence on the potential height, as well as on the interaction between the bosons. We show the appearance of loops in the energy band spectrum of the system for strong enough interactions, which appear at the edges of the first Brillouin zone for odd bands and at the center for even bands. We apply our model to predict the energy band structure of the Bose gas in an optical lattice with subwavelength spatial structure. To discuss the density range of the validity of the GPE predictions, we calculate the ground-state energies of the free Bose gas using the GPE, which we compare with the Lieb–Liniger exact energies.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-019-02276-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banded structure ; Bloch waves ; Bosons ; Brillouin zones ; Characterization and Evaluation of Materials ; Chemical potential ; Compressibility ; Condensed Matter Physics ; Density ; Elliptic functions ; Exact solutions ; Low temperature physics ; Magnetic Materials ; Magnetism ; Optical lattices ; Optical properties ; Organic chemistry ; Periodic structures ; Physics ; Physics and Astronomy ; Wave functions</subject><ispartof>Journal of low temperature physics, 2020-02, Vol.198 (3-4), p.190-208</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73</citedby><cites>FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73</cites><orcidid>0000-0002-3635-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rodríguez-López, Omar Abel</creatorcontrib><creatorcontrib>Solís, M. A.</creatorcontrib><title>Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution for the density profile, as well as for the phase of the wave function in terms of the Jacobi elliptic functions, and the incomplete elliptic integrals of the first, second and third kind. Then, we determine numerically the energy of the ground state, the chemical potential and the compressibility of the condensate and show their dependence on the potential height, as well as on the interaction between the bosons. We show the appearance of loops in the energy band spectrum of the system for strong enough interactions, which appear at the edges of the first Brillouin zone for odd bands and at the center for even bands. We apply our model to predict the energy band structure of the Bose gas in an optical lattice with subwavelength spatial structure. To discuss the density range of the validity of the GPE predictions, we calculate the ground-state energies of the free Bose gas using the GPE, which we compare with the Lieb–Liniger exact energies.</description><subject>Banded structure</subject><subject>Bloch waves</subject><subject>Bosons</subject><subject>Brillouin zones</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical potential</subject><subject>Compressibility</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Elliptic functions</subject><subject>Exact solutions</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Optical lattices</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Periodic structures</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Wave functions</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Qy6W42F0HqXyhU1J7DNJutW9bdmmwtfnujK3jzMMww894b-DF2KuFcAuiLKMGAESBTIepc5HtsJDOthFaZ3mcjSGuBaOQhO4pxDQCmyNWIXT76UHdl7fii6QO1FEK3409dGTlFLq_583a5ow_f-HbVv_L5pq8dNXxGfRp8PGYHFTXRn_z2MVvc3rxM78VsfvcwvZoJp6TpRWlI-UwaZaRbQuGAJBYSKkNSZ6qoytJh5ZdUOa3Qeco8ISqt8hIn6azVmJ0NuZvQvW997O2624Y2vbSoJhPMQRWYVDioXOhiDL6ym1C_Ufi0Euw3JztwsomT_eFk82RSgykmcbvy4S_6H9cXnLFqNA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Rodríguez-López, Omar Abel</creator><creator>Solís, M. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3635-9248</orcidid></search><sort><creationdate>20200201</creationdate><title>Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices</title><author>Rodríguez-López, Omar Abel ; Solís, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Banded structure</topic><topic>Bloch waves</topic><topic>Bosons</topic><topic>Brillouin zones</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical potential</topic><topic>Compressibility</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Elliptic functions</topic><topic>Exact solutions</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Optical lattices</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Periodic structures</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-López, Omar Abel</creatorcontrib><creatorcontrib>Solís, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-López, Omar Abel</au><au>Solís, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>198</volume><issue>3-4</issue><spage>190</spage><epage>208</epage><pages>190-208</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We report on ground-state properties of a one-dimensional, weakly interacting Bose gas constrained by an infinite multi-rod periodic structure at zero temperature. We solve the stationary Gross–Pitaevskii equation (GPE) to obtain the Bloch wave functions from which we give a semi-analytical solution for the density profile, as well as for the phase of the wave function in terms of the Jacobi elliptic functions, and the incomplete elliptic integrals of the first, second and third kind. Then, we determine numerically the energy of the ground state, the chemical potential and the compressibility of the condensate and show their dependence on the potential height, as well as on the interaction between the bosons. We show the appearance of loops in the energy band spectrum of the system for strong enough interactions, which appear at the edges of the first Brillouin zone for odd bands and at the center for even bands. We apply our model to predict the energy band structure of the Bose gas in an optical lattice with subwavelength spatial structure. To discuss the density range of the validity of the GPE predictions, we calculate the ground-state energies of the free Bose gas using the GPE, which we compare with the Lieb–Liniger exact energies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-019-02276-6</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3635-9248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2020-02, Vol.198 (3-4), p.190-208
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2344260382
source Springer Nature
subjects Banded structure
Bloch waves
Bosons
Brillouin zones
Characterization and Evaluation of Materials
Chemical potential
Compressibility
Condensed Matter Physics
Density
Elliptic functions
Exact solutions
Low temperature physics
Magnetic Materials
Magnetism
Optical lattices
Optical properties
Organic chemistry
Periodic structures
Physics
Physics and Astronomy
Wave functions
title Periodic Ultranarrow Rods as 1D Subwavelength Optical Lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Ultranarrow%20Rods%20as%201D%20Subwavelength%20Optical%20Lattices&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Rodr%C3%ADguez-L%C3%B3pez,%20Omar%20Abel&rft.date=2020-02-01&rft.volume=198&rft.issue=3-4&rft.spage=190&rft.epage=208&rft.pages=190-208&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-019-02276-6&rft_dat=%3Cproquest_cross%3E2344260382%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d9a3e519391cb08c0a12810f9a17538fddc2febafc732cea5ea223736d2438f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344260382&rft_id=info:pmid/&rfr_iscdi=true