Loading…

3D Microscale Flow Simulation of Shear-Thinning Fluids in a Rough Fracture

The shear-thinning fluid flow in rough fractures is of wide interest in subsurface engineering. Inertial effects due to flow regime, fracture aperture variations as well as fluid rheology affect the macroscopic flow parameters in an interrelated way. We present a 3D microscale flow simulation for bo...

Full description

Saved in:
Bibliographic Details
Published in:Transport in porous media 2019-05, Vol.128 (1), p.243-269
Main Authors: Zhang, Min, Prodanović, Maša, Mirabolghasemi, Maryam, Zhao, Jianlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-bca73a52bb40be817a6c3d0e0c6b85234a651b5ec68ac1206655f6f41c63d2b73
cites cdi_FETCH-LOGICAL-c347t-bca73a52bb40be817a6c3d0e0c6b85234a651b5ec68ac1206655f6f41c63d2b73
container_end_page 269
container_issue 1
container_start_page 243
container_title Transport in porous media
container_volume 128
creator Zhang, Min
Prodanović, Maša
Mirabolghasemi, Maryam
Zhao, Jianlin
description The shear-thinning fluid flow in rough fractures is of wide interest in subsurface engineering. Inertial effects due to flow regime, fracture aperture variations as well as fluid rheology affect the macroscopic flow parameters in an interrelated way. We present a 3D microscale flow simulation for both Newtonian and Cross power-law shear-thinning fluids through a rough fracture over a range of flow regimes, thus evaluating the critical Reynolds number above which the linear Darcy’s law is no longer applicable. The flow domain is extracted from a computed microtomography image of a fractured Berea sandstone. The fracture aperture is much more variable than any of the previous numerical or experimental work involving shear-thinning fluids, and simulations are 3D for the first time. We quantify the simulated velocity fields and propose a new correlation for shift factor (parameter relating in situ porous medium viscosity with bulk viscosity). The correlation incorporates tortuosity (parameter calculated either based only on fracture image or on detailed velocity field, if available) as well as a fluid-dependent parameter obtained from the analytical/semi-analytical solutions of the same shear-thinning fluids flow in a smooth slit. Our results show that the shift factor is dependent on both the fracture aperture distribution (not only the hydraulic/equivalent aperture) and fluid rheology properties. However, both the inertial coefficient and critical Reynolds number are functions of the fracture geometry only, which is consistent with a recent experimental study.
doi_str_mv 10.1007/s11242-019-01243-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2344555706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344555706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-bca73a52bb40be817a6c3d0e0c6b85234a651b5ec68ac1206655f6f41c63d2b73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKt_wFPAczTJ5GP3KNX6QUWw9RyyabZN2e7WZBfx35tawZuHYS7vzcBD6JLRa0apvkmMccEJZWUeLoCUR2jEpAbCFIhjNKJMlQRKBqfoLKUNpVkrxAg9wx1-CS52ydnG42nTfeJ52A6N7UPX4q7G87W3kSzWoW1Du8rEEJYJhxZb_NYNqzWeRuv6IfpzdFLbJvmL3z1G79P7xeSRzF4fnia3M-JA6J5UzmqwkleVoJUvmLbKwZJ66lRVSA7CKskq6Z0qrGOcKiVlrWrBnIIlrzSM0dXh7i52H4NPvdl0Q2zzS5NtIaXUVP1Lcao5lKWETPEDtS-Qoq_NLoatjV-GUbMvaw5lTS5rfsqaMktwkFKG25WPf6f_sb4B6Q15HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344555706</pqid></control><display><type>article</type><title>3D Microscale Flow Simulation of Shear-Thinning Fluids in a Rough Fracture</title><source>Springer Nature</source><creator>Zhang, Min ; Prodanović, Maša ; Mirabolghasemi, Maryam ; Zhao, Jianlin</creator><creatorcontrib>Zhang, Min ; Prodanović, Maša ; Mirabolghasemi, Maryam ; Zhao, Jianlin</creatorcontrib><description>The shear-thinning fluid flow in rough fractures is of wide interest in subsurface engineering. Inertial effects due to flow regime, fracture aperture variations as well as fluid rheology affect the macroscopic flow parameters in an interrelated way. We present a 3D microscale flow simulation for both Newtonian and Cross power-law shear-thinning fluids through a rough fracture over a range of flow regimes, thus evaluating the critical Reynolds number above which the linear Darcy’s law is no longer applicable. The flow domain is extracted from a computed microtomography image of a fractured Berea sandstone. The fracture aperture is much more variable than any of the previous numerical or experimental work involving shear-thinning fluids, and simulations are 3D for the first time. We quantify the simulated velocity fields and propose a new correlation for shift factor (parameter relating in situ porous medium viscosity with bulk viscosity). The correlation incorporates tortuosity (parameter calculated either based only on fracture image or on detailed velocity field, if available) as well as a fluid-dependent parameter obtained from the analytical/semi-analytical solutions of the same shear-thinning fluids flow in a smooth slit. Our results show that the shift factor is dependent on both the fracture aperture distribution (not only the hydraulic/equivalent aperture) and fluid rheology properties. However, both the inertial coefficient and critical Reynolds number are functions of the fracture geometry only, which is consistent with a recent experimental study.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-019-01243-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Apertures ; Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Exact solutions ; Flow simulation ; Fluid flow ; Fluids ; Fractures ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Microtomography ; Parameters ; Porous media ; Reynolds number ; Rheological properties ; Rheology ; Sandstone ; Shear flow ; Shear thinning (liquids) ; Thinning ; Three dimensional flow ; Tortuosity ; Velocity distribution ; Viscosity</subject><ispartof>Transport in porous media, 2019-05, Vol.128 (1), p.243-269</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Transport in Porous Media is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-bca73a52bb40be817a6c3d0e0c6b85234a651b5ec68ac1206655f6f41c63d2b73</citedby><cites>FETCH-LOGICAL-c347t-bca73a52bb40be817a6c3d0e0c6b85234a651b5ec68ac1206655f6f41c63d2b73</cites><orcidid>0000-0003-4678-8561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Prodanović, Maša</creatorcontrib><creatorcontrib>Mirabolghasemi, Maryam</creatorcontrib><creatorcontrib>Zhao, Jianlin</creatorcontrib><title>3D Microscale Flow Simulation of Shear-Thinning Fluids in a Rough Fracture</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The shear-thinning fluid flow in rough fractures is of wide interest in subsurface engineering. Inertial effects due to flow regime, fracture aperture variations as well as fluid rheology affect the macroscopic flow parameters in an interrelated way. We present a 3D microscale flow simulation for both Newtonian and Cross power-law shear-thinning fluids through a rough fracture over a range of flow regimes, thus evaluating the critical Reynolds number above which the linear Darcy’s law is no longer applicable. The flow domain is extracted from a computed microtomography image of a fractured Berea sandstone. The fracture aperture is much more variable than any of the previous numerical or experimental work involving shear-thinning fluids, and simulations are 3D for the first time. We quantify the simulated velocity fields and propose a new correlation for shift factor (parameter relating in situ porous medium viscosity with bulk viscosity). The correlation incorporates tortuosity (parameter calculated either based only on fracture image or on detailed velocity field, if available) as well as a fluid-dependent parameter obtained from the analytical/semi-analytical solutions of the same shear-thinning fluids flow in a smooth slit. Our results show that the shift factor is dependent on both the fracture aperture distribution (not only the hydraulic/equivalent aperture) and fluid rheology properties. However, both the inertial coefficient and critical Reynolds number are functions of the fracture geometry only, which is consistent with a recent experimental study.</description><subject>Apertures</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Exact solutions</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fractures</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Microtomography</subject><subject>Parameters</subject><subject>Porous media</subject><subject>Reynolds number</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Sandstone</subject><subject>Shear flow</subject><subject>Shear thinning (liquids)</subject><subject>Thinning</subject><subject>Three dimensional flow</subject><subject>Tortuosity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKt_wFPAczTJ5GP3KNX6QUWw9RyyabZN2e7WZBfx35tawZuHYS7vzcBD6JLRa0apvkmMccEJZWUeLoCUR2jEpAbCFIhjNKJMlQRKBqfoLKUNpVkrxAg9wx1-CS52ydnG42nTfeJ52A6N7UPX4q7G87W3kSzWoW1Du8rEEJYJhxZb_NYNqzWeRuv6IfpzdFLbJvmL3z1G79P7xeSRzF4fnia3M-JA6J5UzmqwkleVoJUvmLbKwZJ66lRVSA7CKskq6Z0qrGOcKiVlrWrBnIIlrzSM0dXh7i52H4NPvdl0Q2zzS5NtIaXUVP1Lcao5lKWETPEDtS-Qoq_NLoatjV-GUbMvaw5lTS5rfsqaMktwkFKG25WPf6f_sb4B6Q15HQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Zhang, Min</creator><creator>Prodanović, Maša</creator><creator>Mirabolghasemi, Maryam</creator><creator>Zhao, Jianlin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4678-8561</orcidid></search><sort><creationdate>20190501</creationdate><title>3D Microscale Flow Simulation of Shear-Thinning Fluids in a Rough Fracture</title><author>Zhang, Min ; Prodanović, Maša ; Mirabolghasemi, Maryam ; Zhao, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-bca73a52bb40be817a6c3d0e0c6b85234a651b5ec68ac1206655f6f41c63d2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apertures</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Exact solutions</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fractures</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Microtomography</topic><topic>Parameters</topic><topic>Porous media</topic><topic>Reynolds number</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Sandstone</topic><topic>Shear flow</topic><topic>Shear thinning (liquids)</topic><topic>Thinning</topic><topic>Three dimensional flow</topic><topic>Tortuosity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Prodanović, Maša</creatorcontrib><creatorcontrib>Mirabolghasemi, Maryam</creatorcontrib><creatorcontrib>Zhao, Jianlin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Min</au><au>Prodanović, Maša</au><au>Mirabolghasemi, Maryam</au><au>Zhao, Jianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Microscale Flow Simulation of Shear-Thinning Fluids in a Rough Fracture</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>128</volume><issue>1</issue><spage>243</spage><epage>269</epage><pages>243-269</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>The shear-thinning fluid flow in rough fractures is of wide interest in subsurface engineering. Inertial effects due to flow regime, fracture aperture variations as well as fluid rheology affect the macroscopic flow parameters in an interrelated way. We present a 3D microscale flow simulation for both Newtonian and Cross power-law shear-thinning fluids through a rough fracture over a range of flow regimes, thus evaluating the critical Reynolds number above which the linear Darcy’s law is no longer applicable. The flow domain is extracted from a computed microtomography image of a fractured Berea sandstone. The fracture aperture is much more variable than any of the previous numerical or experimental work involving shear-thinning fluids, and simulations are 3D for the first time. We quantify the simulated velocity fields and propose a new correlation for shift factor (parameter relating in situ porous medium viscosity with bulk viscosity). The correlation incorporates tortuosity (parameter calculated either based only on fracture image or on detailed velocity field, if available) as well as a fluid-dependent parameter obtained from the analytical/semi-analytical solutions of the same shear-thinning fluids flow in a smooth slit. Our results show that the shift factor is dependent on both the fracture aperture distribution (not only the hydraulic/equivalent aperture) and fluid rheology properties. However, both the inertial coefficient and critical Reynolds number are functions of the fracture geometry only, which is consistent with a recent experimental study.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-019-01243-9</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-4678-8561</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2019-05, Vol.128 (1), p.243-269
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2344555706
source Springer Nature
subjects Apertures
Civil Engineering
Classical and Continuum Physics
Computational fluid dynamics
Computer simulation
Earth and Environmental Science
Earth Sciences
Exact solutions
Flow simulation
Fluid flow
Fluids
Fractures
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Microtomography
Parameters
Porous media
Reynolds number
Rheological properties
Rheology
Sandstone
Shear flow
Shear thinning (liquids)
Thinning
Three dimensional flow
Tortuosity
Velocity distribution
Viscosity
title 3D Microscale Flow Simulation of Shear-Thinning Fluids in a Rough Fracture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Microscale%20Flow%20Simulation%20of%20Shear-Thinning%20Fluids%20in%20a%20Rough%20Fracture&rft.jtitle=Transport%20in%20porous%20media&rft.au=Zhang,%20Min&rft.date=2019-05-01&rft.volume=128&rft.issue=1&rft.spage=243&rft.epage=269&rft.pages=243-269&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-019-01243-9&rft_dat=%3Cproquest_cross%3E2344555706%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-bca73a52bb40be817a6c3d0e0c6b85234a651b5ec68ac1206655f6f41c63d2b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344555706&rft_id=info:pmid/&rfr_iscdi=true