Loading…

Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars

Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one meas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2020-01, Vol.127 (4)
Main Authors: Kiga, Ryotaro, Hayashi, Sayaka, Miyamoto, Satoru, Shimizu, Yasuo, Nagai, Yasuyoshi, Endoh, Tetsuo, Itoh, Kohei M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3
cites cdi_FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3
container_end_page
container_issue 4
container_start_page
container_title Journal of applied physics
container_volume 127
creator Kiga, Ryotaro
Hayashi, Sayaka
Miyamoto, Satoru
Shimizu, Yasuo
Nagai, Yasuyoshi
Endoh, Tetsuo
Itoh, Kohei M.
description Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one measured for the standard planar oxidation despite the fact that the diffusion region probed in the pillar was surrounded by approximately seven times more oxidation interface areas than the simple planar oxidation case. This finding can be understood by considering the large diffusion length of ∼300 μm of the interstitials for our thermal oxidation condition. The excess interstitials injected by the pillar oxidation as well as those injected by the oxidation of the base (100) plane can easily diffuse through the sample, including interiors of the pillars, making the concentration of the excess interstitials practically equal to those injected for the (100) planar oxidation case.
doi_str_mv 10.1063/1.5134105
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2346932814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346932814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w4ElhNbPZdJOjFL-gUPDjHGazCaakm5rsiv33RlvwLgzMYR5mmJeQc6DXQGfsBq45sBooPyAToEKWDef0kEworaAUspHH5CSlFaUAgskJeV5-uQ4HF_rS9O_Ya9MVL65Ixtuyc9aOKY8KlyuFIWycRu-3xTp0o8ch2-S801n02Oep9xjTKTmy6JM52_cpebu_e50_lovlw9P8dlFqJtlQWt4JCqbV3Gpo2spYwBaZoMzUAkGDEKKZyZZKaTuZv-IIvEVkteZIrWZTcrHbu4nhYzRpUKswxj6fVBWrZ5JVAuqsLndKx5BSNFZtoltj3Cqg6icyBWofWbZXO5u0G35D-R_-DPEPqk1n2TfbbXrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346932814</pqid></control><display><type>article</type><title>Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kiga, Ryotaro ; Hayashi, Sayaka ; Miyamoto, Satoru ; Shimizu, Yasuo ; Nagai, Yasuyoshi ; Endoh, Tetsuo ; Itoh, Kohei M.</creator><creatorcontrib>Kiga, Ryotaro ; Hayashi, Sayaka ; Miyamoto, Satoru ; Shimizu, Yasuo ; Nagai, Yasuyoshi ; Endoh, Tetsuo ; Itoh, Kohei M.</creatorcontrib><description>Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one measured for the standard planar oxidation despite the fact that the diffusion region probed in the pillar was surrounded by approximately seven times more oxidation interface areas than the simple planar oxidation case. This finding can be understood by considering the large diffusion length of ∼300 μm of the interstitials for our thermal oxidation condition. The excess interstitials injected by the pillar oxidation as well as those injected by the oxidation of the base (100) plane can easily diffuse through the sample, including interiors of the pillars, making the concentration of the excess interstitials practically equal to those injected for the (100) planar oxidation case.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5134105</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Diameters ; Diffusion length ; Diffusivity ; Heterostructures ; Interstitials ; Oxidation ; Self diffusion ; Silicon</subject><ispartof>Journal of applied physics, 2020-01, Vol.127 (4)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3</citedby><cites>FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3</cites><orcidid>0000-0002-6844-8165 ; 0000-0002-6692-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiga, Ryotaro</creatorcontrib><creatorcontrib>Hayashi, Sayaka</creatorcontrib><creatorcontrib>Miyamoto, Satoru</creatorcontrib><creatorcontrib>Shimizu, Yasuo</creatorcontrib><creatorcontrib>Nagai, Yasuyoshi</creatorcontrib><creatorcontrib>Endoh, Tetsuo</creatorcontrib><creatorcontrib>Itoh, Kohei M.</creatorcontrib><title>Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars</title><title>Journal of applied physics</title><description>Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one measured for the standard planar oxidation despite the fact that the diffusion region probed in the pillar was surrounded by approximately seven times more oxidation interface areas than the simple planar oxidation case. This finding can be understood by considering the large diffusion length of ∼300 μm of the interstitials for our thermal oxidation condition. The excess interstitials injected by the pillar oxidation as well as those injected by the oxidation of the base (100) plane can easily diffuse through the sample, including interiors of the pillars, making the concentration of the excess interstitials practically equal to those injected for the (100) planar oxidation case.</description><subject>Applied physics</subject><subject>Diameters</subject><subject>Diffusion length</subject><subject>Diffusivity</subject><subject>Heterostructures</subject><subject>Interstitials</subject><subject>Oxidation</subject><subject>Self diffusion</subject><subject>Silicon</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w4ElhNbPZdJOjFL-gUPDjHGazCaakm5rsiv33RlvwLgzMYR5mmJeQc6DXQGfsBq45sBooPyAToEKWDef0kEworaAUspHH5CSlFaUAgskJeV5-uQ4HF_rS9O_Ya9MVL65Ixtuyc9aOKY8KlyuFIWycRu-3xTp0o8ch2-S801n02Oep9xjTKTmy6JM52_cpebu_e50_lovlw9P8dlFqJtlQWt4JCqbV3Gpo2spYwBaZoMzUAkGDEKKZyZZKaTuZv-IIvEVkteZIrWZTcrHbu4nhYzRpUKswxj6fVBWrZ5JVAuqsLndKx5BSNFZtoltj3Cqg6icyBWofWbZXO5u0G35D-R_-DPEPqk1n2TfbbXrw</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Kiga, Ryotaro</creator><creator>Hayashi, Sayaka</creator><creator>Miyamoto, Satoru</creator><creator>Shimizu, Yasuo</creator><creator>Nagai, Yasuyoshi</creator><creator>Endoh, Tetsuo</creator><creator>Itoh, Kohei M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6844-8165</orcidid><orcidid>https://orcid.org/0000-0002-6692-2097</orcidid></search><sort><creationdate>20200131</creationdate><title>Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars</title><author>Kiga, Ryotaro ; Hayashi, Sayaka ; Miyamoto, Satoru ; Shimizu, Yasuo ; Nagai, Yasuyoshi ; Endoh, Tetsuo ; Itoh, Kohei M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Diameters</topic><topic>Diffusion length</topic><topic>Diffusivity</topic><topic>Heterostructures</topic><topic>Interstitials</topic><topic>Oxidation</topic><topic>Self diffusion</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiga, Ryotaro</creatorcontrib><creatorcontrib>Hayashi, Sayaka</creatorcontrib><creatorcontrib>Miyamoto, Satoru</creatorcontrib><creatorcontrib>Shimizu, Yasuo</creatorcontrib><creatorcontrib>Nagai, Yasuyoshi</creatorcontrib><creatorcontrib>Endoh, Tetsuo</creatorcontrib><creatorcontrib>Itoh, Kohei M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiga, Ryotaro</au><au>Hayashi, Sayaka</au><au>Miyamoto, Satoru</au><au>Shimizu, Yasuo</au><au>Nagai, Yasuyoshi</au><au>Endoh, Tetsuo</au><au>Itoh, Kohei M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars</atitle><jtitle>Journal of applied physics</jtitle><date>2020-01-31</date><risdate>2020</risdate><volume>127</volume><issue>4</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one measured for the standard planar oxidation despite the fact that the diffusion region probed in the pillar was surrounded by approximately seven times more oxidation interface areas than the simple planar oxidation case. This finding can be understood by considering the large diffusion length of ∼300 μm of the interstitials for our thermal oxidation condition. The excess interstitials injected by the pillar oxidation as well as those injected by the oxidation of the base (100) plane can easily diffuse through the sample, including interiors of the pillars, making the concentration of the excess interstitials practically equal to those injected for the (100) planar oxidation case.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5134105</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6844-8165</orcidid><orcidid>https://orcid.org/0000-0002-6692-2097</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-01, Vol.127 (4)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2346932814
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Diameters
Diffusion length
Diffusivity
Heterostructures
Interstitials
Oxidation
Self diffusion
Silicon
title Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation-enhanced%20Si%20self-diffusion%20in%20isotopically%20modulated%20silicon%20nanopillars&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kiga,%20Ryotaro&rft.date=2020-01-31&rft.volume=127&rft.issue=4&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5134105&rft_dat=%3Cproquest_scita%3E2346932814%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2346932814&rft_id=info:pmid/&rfr_iscdi=true