Loading…
Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars
Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one meas...
Saved in:
Published in: | Journal of applied physics 2020-01, Vol.127 (4) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 127 |
creator | Kiga, Ryotaro Hayashi, Sayaka Miyamoto, Satoru Shimizu, Yasuo Nagai, Yasuyoshi Endoh, Tetsuo Itoh, Kohei M. |
description | Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one measured for the standard planar oxidation despite the fact that the diffusion region probed in the pillar was surrounded by approximately seven times more oxidation interface areas than the simple planar oxidation case. This finding can be understood by considering the large diffusion length of ∼300 μm of the interstitials for our thermal oxidation condition. The excess interstitials injected by the pillar oxidation as well as those injected by the oxidation of the base (100) plane can easily diffuse through the sample, including interiors of the pillars, making the concentration of the excess interstitials practically equal to those injected for the (100) planar oxidation case. |
doi_str_mv | 10.1063/1.5134105 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2346932814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346932814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w4ElhNbPZdJOjFL-gUPDjHGazCaakm5rsiv33RlvwLgzMYR5mmJeQc6DXQGfsBq45sBooPyAToEKWDef0kEworaAUspHH5CSlFaUAgskJeV5-uQ4HF_rS9O_Ya9MVL65Ixtuyc9aOKY8KlyuFIWycRu-3xTp0o8ch2-S801n02Oep9xjTKTmy6JM52_cpebu_e50_lovlw9P8dlFqJtlQWt4JCqbV3Gpo2spYwBaZoMzUAkGDEKKZyZZKaTuZv-IIvEVkteZIrWZTcrHbu4nhYzRpUKswxj6fVBWrZ5JVAuqsLndKx5BSNFZtoltj3Cqg6icyBWofWbZXO5u0G35D-R_-DPEPqk1n2TfbbXrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346932814</pqid></control><display><type>article</type><title>Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kiga, Ryotaro ; Hayashi, Sayaka ; Miyamoto, Satoru ; Shimizu, Yasuo ; Nagai, Yasuyoshi ; Endoh, Tetsuo ; Itoh, Kohei M.</creator><creatorcontrib>Kiga, Ryotaro ; Hayashi, Sayaka ; Miyamoto, Satoru ; Shimizu, Yasuo ; Nagai, Yasuyoshi ; Endoh, Tetsuo ; Itoh, Kohei M.</creatorcontrib><description>Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one measured for the standard planar oxidation despite the fact that the diffusion region probed in the pillar was surrounded by approximately seven times more oxidation interface areas than the simple planar oxidation case. This finding can be understood by considering the large diffusion length of ∼300 μm of the interstitials for our thermal oxidation condition. The excess interstitials injected by the pillar oxidation as well as those injected by the oxidation of the base (100) plane can easily diffuse through the sample, including interiors of the pillars, making the concentration of the excess interstitials practically equal to those injected for the (100) planar oxidation case.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5134105</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Diameters ; Diffusion length ; Diffusivity ; Heterostructures ; Interstitials ; Oxidation ; Self diffusion ; Silicon</subject><ispartof>Journal of applied physics, 2020-01, Vol.127 (4)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3</citedby><cites>FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3</cites><orcidid>0000-0002-6844-8165 ; 0000-0002-6692-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiga, Ryotaro</creatorcontrib><creatorcontrib>Hayashi, Sayaka</creatorcontrib><creatorcontrib>Miyamoto, Satoru</creatorcontrib><creatorcontrib>Shimizu, Yasuo</creatorcontrib><creatorcontrib>Nagai, Yasuyoshi</creatorcontrib><creatorcontrib>Endoh, Tetsuo</creatorcontrib><creatorcontrib>Itoh, Kohei M.</creatorcontrib><title>Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars</title><title>Journal of applied physics</title><description>Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one measured for the standard planar oxidation despite the fact that the diffusion region probed in the pillar was surrounded by approximately seven times more oxidation interface areas than the simple planar oxidation case. This finding can be understood by considering the large diffusion length of ∼300 μm of the interstitials for our thermal oxidation condition. The excess interstitials injected by the pillar oxidation as well as those injected by the oxidation of the base (100) plane can easily diffuse through the sample, including interiors of the pillars, making the concentration of the excess interstitials practically equal to those injected for the (100) planar oxidation case.</description><subject>Applied physics</subject><subject>Diameters</subject><subject>Diffusion length</subject><subject>Diffusivity</subject><subject>Heterostructures</subject><subject>Interstitials</subject><subject>Oxidation</subject><subject>Self diffusion</subject><subject>Silicon</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w4ElhNbPZdJOjFL-gUPDjHGazCaakm5rsiv33RlvwLgzMYR5mmJeQc6DXQGfsBq45sBooPyAToEKWDef0kEworaAUspHH5CSlFaUAgskJeV5-uQ4HF_rS9O_Ya9MVL65Ixtuyc9aOKY8KlyuFIWycRu-3xTp0o8ch2-S801n02Oep9xjTKTmy6JM52_cpebu_e50_lovlw9P8dlFqJtlQWt4JCqbV3Gpo2spYwBaZoMzUAkGDEKKZyZZKaTuZv-IIvEVkteZIrWZTcrHbu4nhYzRpUKswxj6fVBWrZ5JVAuqsLndKx5BSNFZtoltj3Cqg6icyBWofWbZXO5u0G35D-R_-DPEPqk1n2TfbbXrw</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Kiga, Ryotaro</creator><creator>Hayashi, Sayaka</creator><creator>Miyamoto, Satoru</creator><creator>Shimizu, Yasuo</creator><creator>Nagai, Yasuyoshi</creator><creator>Endoh, Tetsuo</creator><creator>Itoh, Kohei M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6844-8165</orcidid><orcidid>https://orcid.org/0000-0002-6692-2097</orcidid></search><sort><creationdate>20200131</creationdate><title>Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars</title><author>Kiga, Ryotaro ; Hayashi, Sayaka ; Miyamoto, Satoru ; Shimizu, Yasuo ; Nagai, Yasuyoshi ; Endoh, Tetsuo ; Itoh, Kohei M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Diameters</topic><topic>Diffusion length</topic><topic>Diffusivity</topic><topic>Heterostructures</topic><topic>Interstitials</topic><topic>Oxidation</topic><topic>Self diffusion</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiga, Ryotaro</creatorcontrib><creatorcontrib>Hayashi, Sayaka</creatorcontrib><creatorcontrib>Miyamoto, Satoru</creatorcontrib><creatorcontrib>Shimizu, Yasuo</creatorcontrib><creatorcontrib>Nagai, Yasuyoshi</creatorcontrib><creatorcontrib>Endoh, Tetsuo</creatorcontrib><creatorcontrib>Itoh, Kohei M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiga, Ryotaro</au><au>Hayashi, Sayaka</au><au>Miyamoto, Satoru</au><au>Shimizu, Yasuo</au><au>Nagai, Yasuyoshi</au><au>Endoh, Tetsuo</au><au>Itoh, Kohei M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars</atitle><jtitle>Journal of applied physics</jtitle><date>2020-01-31</date><risdate>2020</risdate><volume>127</volume><issue>4</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Silicon (Si) self-diffusivity in a Si nanopillar under dry oxidation was quantitatively evaluated by atom probe tomography of Si isotope heterostructure interfaces. Dry oxidation of a nanopillar with 200 nm diameter at 920 °C for 4 h revealed that the Si self-diffusivity was the same as the one measured for the standard planar oxidation despite the fact that the diffusion region probed in the pillar was surrounded by approximately seven times more oxidation interface areas than the simple planar oxidation case. This finding can be understood by considering the large diffusion length of ∼300 μm of the interstitials for our thermal oxidation condition. The excess interstitials injected by the pillar oxidation as well as those injected by the oxidation of the base (100) plane can easily diffuse through the sample, including interiors of the pillars, making the concentration of the excess interstitials practically equal to those injected for the (100) planar oxidation case.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5134105</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6844-8165</orcidid><orcidid>https://orcid.org/0000-0002-6692-2097</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-01, Vol.127 (4) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2346932814 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Diameters Diffusion length Diffusivity Heterostructures Interstitials Oxidation Self diffusion Silicon |
title | Oxidation-enhanced Si self-diffusion in isotopically modulated silicon nanopillars |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation-enhanced%20Si%20self-diffusion%20in%20isotopically%20modulated%20silicon%20nanopillars&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kiga,%20Ryotaro&rft.date=2020-01-31&rft.volume=127&rft.issue=4&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5134105&rft_dat=%3Cproquest_scita%3E2346932814%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f5d801ebc5fc17b2ef1aba3803e48a1c1888769b099fd95135a15baa34c5a0fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2346932814&rft_id=info:pmid/&rfr_iscdi=true |