Loading…
Timing, magnitude and geochemistry of major Southeast Asian volcanic eruptions: identifying tephrochronologic markers
ABSTRACT We review the current knowledge about Southeast Asian volcanoes and their eruption histories, and focus on identifying tephrochronologic markers representing major explosive eruptions in order to further future palaeoclimate and volcanological studies. Forty‐one volcanic edifices in Southea...
Saved in:
Published in: | Journal of quaternary science 2020-01, Vol.35 (1-2), p.272-287 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
We review the current knowledge about Southeast Asian volcanoes and their eruption histories, and focus on identifying tephrochronologic markers representing major explosive eruptions in order to further future palaeoclimate and volcanological studies. Forty‐one volcanic edifices in Southeast Asia have been classified as large calderas by Whelley et al. (2015) and thus have, or are likely to have, produced large explosive eruptions with a Volcanic Explosivity Index (VEI) of 6–8. Unfortunately, only 20 such eruptions have known ages, spanning from 1.2 Ma to 1991 ad, and fewer have geochemical data that can be used for tephrostratigraphic correlations. Volcanic products from different geodynamic regions and different sources can generally be distinguished on major element plots (e.g. K2O versus CaO) of matrix glass composition. However, the distinction of multiple eruptions from the same source often requires additional data such as trace element compositions of matrix glass and/or mineral compositions. Biotite, but also magnetite compositions (MgO and TiO2 content in particular) appear to be very discriminating. Up to nine tuffs in addition to the three to four Toba tuffs can be utilised as widespread tephrochronologic markers and span a range from 1.2 to 1.6 Ma to recent. As only a few Holocene major eruptions have been well characterised and dated, many large calderas are still unstudied, and many distal tephra layers are still lacking a source, more tephrochronologic markers can certainly be defined in the future. |
---|---|
ISSN: | 0267-8179 1099-1417 |
DOI: | 10.1002/jqs.3181 |