Loading…

Buckled Conductive Polymer Ribbons in Elastomer Channels as Stretchable Fiber Conductor

Conductors that can sustain large strains without change in resistance are highly needed for wearable electronic systems. Here, the fabrication of highly stretchable coaxial fiber conductors through self‐buckling of conductive polymer ribbons inside thermoplastic elastomer channels, using a “solutio...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2020-01, Vol.30 (5), p.n/a
Main Authors: Zhou, Jian, Tian, Guoqiang, Jin, Gang, Xin, Yangyang, Tao, Ran, Lubineau, Gilles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conductors that can sustain large strains without change in resistance are highly needed for wearable electronic systems. Here, the fabrication of highly stretchable coaxial fiber conductors through self‐buckling of conductive polymer ribbons inside thermoplastic elastomer channels, using a “solution stretching–drying–buckling” process, is reported. The unique hierarchically buckled and conductive core in the axial direction makes the resistance of the fiber very stable, with less than 4% change when applying as much as 680% strain. These fibers can then be directly used as stretchable electrical interconnects or wearable heaters. The fabrication of highly stretchable coaxial fiber conductors through self‐buckling of conductive polymer ribbons inside thermoplastic elastomer channels, using a “solution stretching–drying–buckling” process, is reported. The unique hierarchically buckled and conductive core in the axial direction makes the resistance of the fiber very stable, with less than 4% change when applying as much as 680% strain.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201907316