Loading…
A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF
This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Net...
Saved in:
Published in: | IEEE sensors journal 2020-02, Vol.20 (4), p.2023-2033 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573 |
container_end_page | 2033 |
container_issue | 4 |
container_start_page | 2023 |
container_title | IEEE sensors journal |
container_volume | 20 |
creator | Rezamand, Milad Kordestani, Mojtaba Carriveau, Rupp Ting, David S.-K. Saif, Mehrdad |
description | This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algorithm, Principal Component Analysis (PCA), and wavelet-based Probability Density Function (PDF) approach is proposed in this work. The proposed fault detection strategy accurately detects incipient blade failures and leads to improved maintenance cost and availability of the system. Experimental test results based on data from a wind farm in southwestern Ontario, Canada, illustrate the effectiveness and high accuracy of the proposed monitoring approach. |
doi_str_mv | 10.1109/JSEN.2019.2948997 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2348110523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8879580</ieee_id><sourcerecordid>2348110523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-HbdfZ9hEQRINIFIJvTbfeaQlu2G4Y_r1bID7d8_Cdc5MPoWtKepQSdff8Ppr1GKGqxxSXSokT1KFJIiMquDxtc0wiHouPc3QRwpo0pEhEB0Efz-AXT_apdxaPTb2p8ANUkFWuLPALVF-lxXnp8coVFi9qn7oC8GBjLAS8DK74xG-Q1T64HeD5sI9Ng63MDjZQRQMTwOL5w_gSneVmE-DqeLtoOR4thpNo-vr4NOxPoyzmtIqYvY9VlgHL8lxAQlILVgluFVDJcwOpBJvnqTQZgJWcMMrSxFiSckaISUTcRbeH3a0vf2oIlV6XtS-al5rFXDamEhY3FD1QmS9D8JDrrXffxu81Jbq1qVuburWpjzabzs2h4wDgn5dSqESS-A-e33DO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348110523</pqid></control><display><type>article</type><title>A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rezamand, Milad ; Kordestani, Mojtaba ; Carriveau, Rupp ; Ting, David S.-K. ; Saif, Mehrdad</creator><creatorcontrib>Rezamand, Milad ; Kordestani, Mojtaba ; Carriveau, Rupp ; Ting, David S.-K. ; Saif, Mehrdad</creatorcontrib><description>This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algorithm, Principal Component Analysis (PCA), and wavelet-based Probability Density Function (PDF) approach is proposed in this work. The proposed fault detection strategy accurately detects incipient blade failures and leads to improved maintenance cost and availability of the system. Experimental test results based on data from a wind farm in southwestern Ontario, Canada, illustrate the effectiveness and high accuracy of the proposed monitoring approach.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2948997</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Blades ; Condition monitoring ; Control systems ; discrete wavelet transforms ; Fault detection ; Hybrid systems ; Maintenance costs ; Monitoring ; Neural networks ; Principal component analysis ; Principal components analysis ; probability density function (PDF) ; Probability density functions ; Recursive methods ; Regression analysis ; Statistical analysis ; Supervisory control and data acquisition ; Turbine blades ; Wavelet analysis ; Wavelet transforms ; Wind farms ; Wind power ; Wind turbines</subject><ispartof>IEEE sensors journal, 2020-02, Vol.20 (4), p.2023-2033</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573</citedby><cites>FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573</cites><orcidid>0000-0002-0919-6156 ; 0000-0002-9900-1307 ; 0000-0001-9588-6155 ; 0000-0002-7587-4189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8879580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Rezamand, Milad</creatorcontrib><creatorcontrib>Kordestani, Mojtaba</creatorcontrib><creatorcontrib>Carriveau, Rupp</creatorcontrib><creatorcontrib>Ting, David S.-K.</creatorcontrib><creatorcontrib>Saif, Mehrdad</creatorcontrib><title>A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algorithm, Principal Component Analysis (PCA), and wavelet-based Probability Density Function (PDF) approach is proposed in this work. The proposed fault detection strategy accurately detects incipient blade failures and leads to improved maintenance cost and availability of the system. Experimental test results based on data from a wind farm in southwestern Ontario, Canada, illustrate the effectiveness and high accuracy of the proposed monitoring approach.</description><subject>Algorithms</subject><subject>Blades</subject><subject>Condition monitoring</subject><subject>Control systems</subject><subject>discrete wavelet transforms</subject><subject>Fault detection</subject><subject>Hybrid systems</subject><subject>Maintenance costs</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>probability density function (PDF)</subject><subject>Probability density functions</subject><subject>Recursive methods</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Supervisory control and data acquisition</subject><subject>Turbine blades</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-HbdfZ9hEQRINIFIJvTbfeaQlu2G4Y_r1bID7d8_Cdc5MPoWtKepQSdff8Ppr1GKGqxxSXSokT1KFJIiMquDxtc0wiHouPc3QRwpo0pEhEB0Efz-AXT_apdxaPTb2p8ANUkFWuLPALVF-lxXnp8coVFi9qn7oC8GBjLAS8DK74xG-Q1T64HeD5sI9Ng63MDjZQRQMTwOL5w_gSneVmE-DqeLtoOR4thpNo-vr4NOxPoyzmtIqYvY9VlgHL8lxAQlILVgluFVDJcwOpBJvnqTQZgJWcMMrSxFiSckaISUTcRbeH3a0vf2oIlV6XtS-al5rFXDamEhY3FD1QmS9D8JDrrXffxu81Jbq1qVuburWpjzabzs2h4wDgn5dSqESS-A-e33DO</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Rezamand, Milad</creator><creator>Kordestani, Mojtaba</creator><creator>Carriveau, Rupp</creator><creator>Ting, David S.-K.</creator><creator>Saif, Mehrdad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0919-6156</orcidid><orcidid>https://orcid.org/0000-0002-9900-1307</orcidid><orcidid>https://orcid.org/0000-0001-9588-6155</orcidid><orcidid>https://orcid.org/0000-0002-7587-4189</orcidid></search><sort><creationdate>20200215</creationdate><title>A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF</title><author>Rezamand, Milad ; Kordestani, Mojtaba ; Carriveau, Rupp ; Ting, David S.-K. ; Saif, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Blades</topic><topic>Condition monitoring</topic><topic>Control systems</topic><topic>discrete wavelet transforms</topic><topic>Fault detection</topic><topic>Hybrid systems</topic><topic>Maintenance costs</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>probability density function (PDF)</topic><topic>Probability density functions</topic><topic>Recursive methods</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Supervisory control and data acquisition</topic><topic>Turbine blades</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezamand, Milad</creatorcontrib><creatorcontrib>Kordestani, Mojtaba</creatorcontrib><creatorcontrib>Carriveau, Rupp</creatorcontrib><creatorcontrib>Ting, David S.-K.</creatorcontrib><creatorcontrib>Saif, Mehrdad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezamand, Milad</au><au>Kordestani, Mojtaba</au><au>Carriveau, Rupp</au><au>Ting, David S.-K.</au><au>Saif, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-02-15</date><risdate>2020</risdate><volume>20</volume><issue>4</issue><spage>2023</spage><epage>2033</epage><pages>2023-2033</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algorithm, Principal Component Analysis (PCA), and wavelet-based Probability Density Function (PDF) approach is proposed in this work. The proposed fault detection strategy accurately detects incipient blade failures and leads to improved maintenance cost and availability of the system. Experimental test results based on data from a wind farm in southwestern Ontario, Canada, illustrate the effectiveness and high accuracy of the proposed monitoring approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2948997</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0919-6156</orcidid><orcidid>https://orcid.org/0000-0002-9900-1307</orcidid><orcidid>https://orcid.org/0000-0001-9588-6155</orcidid><orcidid>https://orcid.org/0000-0002-7587-4189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2020-02, Vol.20 (4), p.2023-2033 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2348110523 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Blades Condition monitoring Control systems discrete wavelet transforms Fault detection Hybrid systems Maintenance costs Monitoring Neural networks Principal component analysis Principal components analysis probability density function (PDF) Probability density functions Recursive methods Regression analysis Statistical analysis Supervisory control and data acquisition Turbine blades Wavelet analysis Wavelet transforms Wind farms Wind power Wind turbines |
title | A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Hybrid%20Fault%20Detection%20Method%20for%20Wind%20Turbine%20Blades%20Using%20Recursive%20PCA%20and%20Wavelet-Based%20PDF&rft.jtitle=IEEE%20sensors%20journal&rft.au=Rezamand,%20Milad&rft.date=2020-02-15&rft.volume=20&rft.issue=4&rft.spage=2023&rft.epage=2033&rft.pages=2023-2033&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2948997&rft_dat=%3Cproquest_ieee_%3E2348110523%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348110523&rft_id=info:pmid/&rft_ieee_id=8879580&rfr_iscdi=true |