Loading…

A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF

This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Net...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2020-02, Vol.20 (4), p.2023-2033
Main Authors: Rezamand, Milad, Kordestani, Mojtaba, Carriveau, Rupp, Ting, David S.-K., Saif, Mehrdad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573
cites cdi_FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573
container_end_page 2033
container_issue 4
container_start_page 2023
container_title IEEE sensors journal
container_volume 20
creator Rezamand, Milad
Kordestani, Mojtaba
Carriveau, Rupp
Ting, David S.-K.
Saif, Mehrdad
description This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algorithm, Principal Component Analysis (PCA), and wavelet-based Probability Density Function (PDF) approach is proposed in this work. The proposed fault detection strategy accurately detects incipient blade failures and leads to improved maintenance cost and availability of the system. Experimental test results based on data from a wind farm in southwestern Ontario, Canada, illustrate the effectiveness and high accuracy of the proposed monitoring approach.
doi_str_mv 10.1109/JSEN.2019.2948997
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2348110523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8879580</ieee_id><sourcerecordid>2348110523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-HbdfZ9hEQRINIFIJvTbfeaQlu2G4Y_r1bID7d8_Cdc5MPoWtKepQSdff8Ppr1GKGqxxSXSokT1KFJIiMquDxtc0wiHouPc3QRwpo0pEhEB0Efz-AXT_apdxaPTb2p8ANUkFWuLPALVF-lxXnp8coVFi9qn7oC8GBjLAS8DK74xG-Q1T64HeD5sI9Ng63MDjZQRQMTwOL5w_gSneVmE-DqeLtoOR4thpNo-vr4NOxPoyzmtIqYvY9VlgHL8lxAQlILVgluFVDJcwOpBJvnqTQZgJWcMMrSxFiSckaISUTcRbeH3a0vf2oIlV6XtS-al5rFXDamEhY3FD1QmS9D8JDrrXffxu81Jbq1qVuburWpjzabzs2h4wDgn5dSqESS-A-e33DO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348110523</pqid></control><display><type>article</type><title>A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rezamand, Milad ; Kordestani, Mojtaba ; Carriveau, Rupp ; Ting, David S.-K. ; Saif, Mehrdad</creator><creatorcontrib>Rezamand, Milad ; Kordestani, Mojtaba ; Carriveau, Rupp ; Ting, David S.-K. ; Saif, Mehrdad</creatorcontrib><description>This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algorithm, Principal Component Analysis (PCA), and wavelet-based Probability Density Function (PDF) approach is proposed in this work. The proposed fault detection strategy accurately detects incipient blade failures and leads to improved maintenance cost and availability of the system. Experimental test results based on data from a wind farm in southwestern Ontario, Canada, illustrate the effectiveness and high accuracy of the proposed monitoring approach.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2948997</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Blades ; Condition monitoring ; Control systems ; discrete wavelet transforms ; Fault detection ; Hybrid systems ; Maintenance costs ; Monitoring ; Neural networks ; Principal component analysis ; Principal components analysis ; probability density function (PDF) ; Probability density functions ; Recursive methods ; Regression analysis ; Statistical analysis ; Supervisory control and data acquisition ; Turbine blades ; Wavelet analysis ; Wavelet transforms ; Wind farms ; Wind power ; Wind turbines</subject><ispartof>IEEE sensors journal, 2020-02, Vol.20 (4), p.2023-2033</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573</citedby><cites>FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573</cites><orcidid>0000-0002-0919-6156 ; 0000-0002-9900-1307 ; 0000-0001-9588-6155 ; 0000-0002-7587-4189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8879580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Rezamand, Milad</creatorcontrib><creatorcontrib>Kordestani, Mojtaba</creatorcontrib><creatorcontrib>Carriveau, Rupp</creatorcontrib><creatorcontrib>Ting, David S.-K.</creatorcontrib><creatorcontrib>Saif, Mehrdad</creatorcontrib><title>A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algorithm, Principal Component Analysis (PCA), and wavelet-based Probability Density Function (PDF) approach is proposed in this work. The proposed fault detection strategy accurately detects incipient blade failures and leads to improved maintenance cost and availability of the system. Experimental test results based on data from a wind farm in southwestern Ontario, Canada, illustrate the effectiveness and high accuracy of the proposed monitoring approach.</description><subject>Algorithms</subject><subject>Blades</subject><subject>Condition monitoring</subject><subject>Control systems</subject><subject>discrete wavelet transforms</subject><subject>Fault detection</subject><subject>Hybrid systems</subject><subject>Maintenance costs</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>probability density function (PDF)</subject><subject>Probability density functions</subject><subject>Recursive methods</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Supervisory control and data acquisition</subject><subject>Turbine blades</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-HbdfZ9hEQRINIFIJvTbfeaQlu2G4Y_r1bID7d8_Cdc5MPoWtKepQSdff8Ppr1GKGqxxSXSokT1KFJIiMquDxtc0wiHouPc3QRwpo0pEhEB0Efz-AXT_apdxaPTb2p8ANUkFWuLPALVF-lxXnp8coVFi9qn7oC8GBjLAS8DK74xG-Q1T64HeD5sI9Ng63MDjZQRQMTwOL5w_gSneVmE-DqeLtoOR4thpNo-vr4NOxPoyzmtIqYvY9VlgHL8lxAQlILVgluFVDJcwOpBJvnqTQZgJWcMMrSxFiSckaISUTcRbeH3a0vf2oIlV6XtS-al5rFXDamEhY3FD1QmS9D8JDrrXffxu81Jbq1qVuburWpjzabzs2h4wDgn5dSqESS-A-e33DO</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Rezamand, Milad</creator><creator>Kordestani, Mojtaba</creator><creator>Carriveau, Rupp</creator><creator>Ting, David S.-K.</creator><creator>Saif, Mehrdad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0919-6156</orcidid><orcidid>https://orcid.org/0000-0002-9900-1307</orcidid><orcidid>https://orcid.org/0000-0001-9588-6155</orcidid><orcidid>https://orcid.org/0000-0002-7587-4189</orcidid></search><sort><creationdate>20200215</creationdate><title>A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF</title><author>Rezamand, Milad ; Kordestani, Mojtaba ; Carriveau, Rupp ; Ting, David S.-K. ; Saif, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Blades</topic><topic>Condition monitoring</topic><topic>Control systems</topic><topic>discrete wavelet transforms</topic><topic>Fault detection</topic><topic>Hybrid systems</topic><topic>Maintenance costs</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>probability density function (PDF)</topic><topic>Probability density functions</topic><topic>Recursive methods</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Supervisory control and data acquisition</topic><topic>Turbine blades</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezamand, Milad</creatorcontrib><creatorcontrib>Kordestani, Mojtaba</creatorcontrib><creatorcontrib>Carriveau, Rupp</creatorcontrib><creatorcontrib>Ting, David S.-K.</creatorcontrib><creatorcontrib>Saif, Mehrdad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezamand, Milad</au><au>Kordestani, Mojtaba</au><au>Carriveau, Rupp</au><au>Ting, David S.-K.</au><au>Saif, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-02-15</date><risdate>2020</risdate><volume>20</volume><issue>4</issue><spage>2023</spage><epage>2033</epage><pages>2023-2033</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper introduces a new condition monitoring approach for extracting fault signatures in wind turbine blades by utilizing the data from a real-time Supervisory Control and Data Acquisition (SCADA) system. A hybrid fault detection system based on a combination of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algorithm, Principal Component Analysis (PCA), and wavelet-based Probability Density Function (PDF) approach is proposed in this work. The proposed fault detection strategy accurately detects incipient blade failures and leads to improved maintenance cost and availability of the system. Experimental test results based on data from a wind farm in southwestern Ontario, Canada, illustrate the effectiveness and high accuracy of the proposed monitoring approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2948997</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0919-6156</orcidid><orcidid>https://orcid.org/0000-0002-9900-1307</orcidid><orcidid>https://orcid.org/0000-0001-9588-6155</orcidid><orcidid>https://orcid.org/0000-0002-7587-4189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-02, Vol.20 (4), p.2023-2033
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2348110523
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Blades
Condition monitoring
Control systems
discrete wavelet transforms
Fault detection
Hybrid systems
Maintenance costs
Monitoring
Neural networks
Principal component analysis
Principal components analysis
probability density function (PDF)
Probability density functions
Recursive methods
Regression analysis
Statistical analysis
Supervisory control and data acquisition
Turbine blades
Wavelet analysis
Wavelet transforms
Wind farms
Wind power
Wind turbines
title A New Hybrid Fault Detection Method for Wind Turbine Blades Using Recursive PCA and Wavelet-Based PDF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Hybrid%20Fault%20Detection%20Method%20for%20Wind%20Turbine%20Blades%20Using%20Recursive%20PCA%20and%20Wavelet-Based%20PDF&rft.jtitle=IEEE%20sensors%20journal&rft.au=Rezamand,%20Milad&rft.date=2020-02-15&rft.volume=20&rft.issue=4&rft.spage=2023&rft.epage=2033&rft.pages=2023-2033&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2948997&rft_dat=%3Cproquest_ieee_%3E2348110523%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-2d639cce2cff7e50bded974d9e184faeb8edffb8aceed840212b5ad0b4200a573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348110523&rft_id=info:pmid/&rft_ieee_id=8879580&rfr_iscdi=true