Loading…

Robust QoE-Driven DASH Over OFDMA Networks

In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate predict...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2020-02, Vol.22 (2), p.474-486
Main Authors: Xiao, Kefan, Mao, Shiwen, Tugnait, Jitendra K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3
cites cdi_FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3
container_end_page 486
container_issue 2
container_start_page 474
container_title IEEE transactions on multimedia
container_volume 22
creator Xiao, Kefan
Mao, Shiwen
Tugnait, Jitendra K.
description In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate prediction for DASH over OFDMA. We first formulate an offline cross-layer optimization problem based on a novel quality of experience (QoE) model. Then the online reformulation is derived and proved to be asymptotically optimal. After analyzing the structure of the online problem, we propose a decomposition approach to obtain a user equipment (UE) rate adaptation problem and a BS resource allocation problem. We introduce stochastic model predictive control (SMPC) to achieve high robustness on video rate adaption and consider the request interval for more efficient resource allocation. Extensive simulations show that the proposed scheme can achieve a better QoE performance compared with other variations and a benchmark algorithm, which is mainly due to its lower rebuffering ratio and more stable bitrate choices.
doi_str_mv 10.1109/TMM.2019.2929929
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2348111437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8782601</ieee_id><sourcerecordid>2348111437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8F34TWuyRtmsexbk5YLep8Dm2awKauM2k3_O_t6BAOfvfw_e7gI-QWIUIE-bjK84gCyohKKvs5IyOUHEMAIc77PaYQSopwSa683wAgj0GMyMNbU3W-DV6bWZi59d5sg2zyvgiKvXFBMc_ySfBi2kPjPv01ubDllzc3pxyTj_lsNV2Ey-LpeTpZhpox1oZJoq3UstIxoGUVlJpWVrI0SXmtOUoQsdUUNONogGtdI1pZWlOLSgpLKzYm98PdnWt-OuNbtWk6t-1fKsp4ioiciZ6CgdKu8d4Zq3Zu_V26X4WgjkZUb0QdjaiTkb5yN1TWxph_PBUpTQDZH6nFWds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348111437</pqid></control><display><type>article</type><title>Robust QoE-Driven DASH Over OFDMA Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xiao, Kefan ; Mao, Shiwen ; Tugnait, Jitendra K.</creator><creatorcontrib>Xiao, Kefan ; Mao, Shiwen ; Tugnait, Jitendra K.</creatorcontrib><description>In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate prediction for DASH over OFDMA. We first formulate an offline cross-layer optimization problem based on a novel quality of experience (QoE) model. Then the online reformulation is derived and proved to be asymptotically optimal. After analyzing the structure of the online problem, we propose a decomposition approach to obtain a user equipment (UE) rate adaptation problem and a BS resource allocation problem. We introduce stochastic model predictive control (SMPC) to achieve high robustness on video rate adaption and consider the request interval for more efficient resource allocation. Extensive simulations show that the proposed scheme can achieve a better QoE performance compared with other variations and a benchmark algorithm, which is mainly due to its lower rebuffering ratio and more stable bitrate choices.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2019.2929929</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer simulation ; Dynamic Adaptive Streaming over HTTP (DASH) ; OFDM ; Optimization ; Orthogonal Frequency Division Multiple Access (OFDMA) ; Orthogonal Frequency Division Multiplexing ; Predictive control ; Quality of experience ; Quality of Experience (QoE) ; rate adaptation ; Resource allocation ; Resource management ; Robustness ; Servers ; Stochastic models ; Streaming media ; Videos</subject><ispartof>IEEE transactions on multimedia, 2020-02, Vol.22 (2), p.474-486</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3</citedby><cites>FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3</cites><orcidid>0000-0002-7052-0007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8782601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Xiao, Kefan</creatorcontrib><creatorcontrib>Mao, Shiwen</creatorcontrib><creatorcontrib>Tugnait, Jitendra K.</creatorcontrib><title>Robust QoE-Driven DASH Over OFDMA Networks</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate prediction for DASH over OFDMA. We first formulate an offline cross-layer optimization problem based on a novel quality of experience (QoE) model. Then the online reformulation is derived and proved to be asymptotically optimal. After analyzing the structure of the online problem, we propose a decomposition approach to obtain a user equipment (UE) rate adaptation problem and a BS resource allocation problem. We introduce stochastic model predictive control (SMPC) to achieve high robustness on video rate adaption and consider the request interval for more efficient resource allocation. Extensive simulations show that the proposed scheme can achieve a better QoE performance compared with other variations and a benchmark algorithm, which is mainly due to its lower rebuffering ratio and more stable bitrate choices.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Dynamic Adaptive Streaming over HTTP (DASH)</subject><subject>OFDM</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiple Access (OFDMA)</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Predictive control</subject><subject>Quality of experience</subject><subject>Quality of Experience (QoE)</subject><subject>rate adaptation</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Robustness</subject><subject>Servers</subject><subject>Stochastic models</subject><subject>Streaming media</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4MoOKfvgi8F34TWuyRtmsexbk5YLep8Dm2awKauM2k3_O_t6BAOfvfw_e7gI-QWIUIE-bjK84gCyohKKvs5IyOUHEMAIc77PaYQSopwSa683wAgj0GMyMNbU3W-DV6bWZi59d5sg2zyvgiKvXFBMc_ySfBi2kPjPv01ubDllzc3pxyTj_lsNV2Ey-LpeTpZhpox1oZJoq3UstIxoGUVlJpWVrI0SXmtOUoQsdUUNONogGtdI1pZWlOLSgpLKzYm98PdnWt-OuNbtWk6t-1fKsp4ioiciZ6CgdKu8d4Zq3Zu_V26X4WgjkZUb0QdjaiTkb5yN1TWxph_PBUpTQDZH6nFWds</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Xiao, Kefan</creator><creator>Mao, Shiwen</creator><creator>Tugnait, Jitendra K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7052-0007</orcidid></search><sort><creationdate>20200201</creationdate><title>Robust QoE-Driven DASH Over OFDMA Networks</title><author>Xiao, Kefan ; Mao, Shiwen ; Tugnait, Jitendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Dynamic Adaptive Streaming over HTTP (DASH)</topic><topic>OFDM</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiple Access (OFDMA)</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Predictive control</topic><topic>Quality of experience</topic><topic>Quality of Experience (QoE)</topic><topic>rate adaptation</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Robustness</topic><topic>Servers</topic><topic>Stochastic models</topic><topic>Streaming media</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Kefan</creatorcontrib><creatorcontrib>Mao, Shiwen</creatorcontrib><creatorcontrib>Tugnait, Jitendra K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Kefan</au><au>Mao, Shiwen</au><au>Tugnait, Jitendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust QoE-Driven DASH Over OFDMA Networks</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>22</volume><issue>2</issue><spage>474</spage><epage>486</epage><pages>474-486</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate prediction for DASH over OFDMA. We first formulate an offline cross-layer optimization problem based on a novel quality of experience (QoE) model. Then the online reformulation is derived and proved to be asymptotically optimal. After analyzing the structure of the online problem, we propose a decomposition approach to obtain a user equipment (UE) rate adaptation problem and a BS resource allocation problem. We introduce stochastic model predictive control (SMPC) to achieve high robustness on video rate adaption and consider the request interval for more efficient resource allocation. Extensive simulations show that the proposed scheme can achieve a better QoE performance compared with other variations and a benchmark algorithm, which is mainly due to its lower rebuffering ratio and more stable bitrate choices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2019.2929929</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7052-0007</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2020-02, Vol.22 (2), p.474-486
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2348111437
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Computer simulation
Dynamic Adaptive Streaming over HTTP (DASH)
OFDM
Optimization
Orthogonal Frequency Division Multiple Access (OFDMA)
Orthogonal Frequency Division Multiplexing
Predictive control
Quality of experience
Quality of Experience (QoE)
rate adaptation
Resource allocation
Resource management
Robustness
Servers
Stochastic models
Streaming media
Videos
title Robust QoE-Driven DASH Over OFDMA Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20QoE-Driven%20DASH%20Over%20OFDMA%20Networks&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xiao,%20Kefan&rft.date=2020-02-01&rft.volume=22&rft.issue=2&rft.spage=474&rft.epage=486&rft.pages=474-486&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2019.2929929&rft_dat=%3Cproquest_ieee_%3E2348111437%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348111437&rft_id=info:pmid/&rft_ieee_id=8782601&rfr_iscdi=true