Loading…
Robust QoE-Driven DASH Over OFDMA Networks
In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate predict...
Saved in:
Published in: | IEEE transactions on multimedia 2020-02, Vol.22 (2), p.474-486 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3 |
container_end_page | 486 |
container_issue | 2 |
container_start_page | 474 |
container_title | IEEE transactions on multimedia |
container_volume | 22 |
creator | Xiao, Kefan Mao, Shiwen Tugnait, Jitendra K. |
description | In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate prediction for DASH over OFDMA. We first formulate an offline cross-layer optimization problem based on a novel quality of experience (QoE) model. Then the online reformulation is derived and proved to be asymptotically optimal. After analyzing the structure of the online problem, we propose a decomposition approach to obtain a user equipment (UE) rate adaptation problem and a BS resource allocation problem. We introduce stochastic model predictive control (SMPC) to achieve high robustness on video rate adaption and consider the request interval for more efficient resource allocation. Extensive simulations show that the proposed scheme can achieve a better QoE performance compared with other variations and a benchmark algorithm, which is mainly due to its lower rebuffering ratio and more stable bitrate choices. |
doi_str_mv | 10.1109/TMM.2019.2929929 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2348111437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8782601</ieee_id><sourcerecordid>2348111437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8F34TWuyRtmsexbk5YLep8Dm2awKauM2k3_O_t6BAOfvfw_e7gI-QWIUIE-bjK84gCyohKKvs5IyOUHEMAIc77PaYQSopwSa683wAgj0GMyMNbU3W-DV6bWZi59d5sg2zyvgiKvXFBMc_ySfBi2kPjPv01ubDllzc3pxyTj_lsNV2Ey-LpeTpZhpox1oZJoq3UstIxoGUVlJpWVrI0SXmtOUoQsdUUNONogGtdI1pZWlOLSgpLKzYm98PdnWt-OuNbtWk6t-1fKsp4ioiciZ6CgdKu8d4Zq3Zu_V26X4WgjkZUb0QdjaiTkb5yN1TWxph_PBUpTQDZH6nFWds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348111437</pqid></control><display><type>article</type><title>Robust QoE-Driven DASH Over OFDMA Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xiao, Kefan ; Mao, Shiwen ; Tugnait, Jitendra K.</creator><creatorcontrib>Xiao, Kefan ; Mao, Shiwen ; Tugnait, Jitendra K.</creatorcontrib><description>In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate prediction for DASH over OFDMA. We first formulate an offline cross-layer optimization problem based on a novel quality of experience (QoE) model. Then the online reformulation is derived and proved to be asymptotically optimal. After analyzing the structure of the online problem, we propose a decomposition approach to obtain a user equipment (UE) rate adaptation problem and a BS resource allocation problem. We introduce stochastic model predictive control (SMPC) to achieve high robustness on video rate adaption and consider the request interval for more efficient resource allocation. Extensive simulations show that the proposed scheme can achieve a better QoE performance compared with other variations and a benchmark algorithm, which is mainly due to its lower rebuffering ratio and more stable bitrate choices.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2019.2929929</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer simulation ; Dynamic Adaptive Streaming over HTTP (DASH) ; OFDM ; Optimization ; Orthogonal Frequency Division Multiple Access (OFDMA) ; Orthogonal Frequency Division Multiplexing ; Predictive control ; Quality of experience ; Quality of Experience (QoE) ; rate adaptation ; Resource allocation ; Resource management ; Robustness ; Servers ; Stochastic models ; Streaming media ; Videos</subject><ispartof>IEEE transactions on multimedia, 2020-02, Vol.22 (2), p.474-486</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3</citedby><cites>FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3</cites><orcidid>0000-0002-7052-0007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8782601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Xiao, Kefan</creatorcontrib><creatorcontrib>Mao, Shiwen</creatorcontrib><creatorcontrib>Tugnait, Jitendra K.</creatorcontrib><title>Robust QoE-Driven DASH Over OFDMA Networks</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate prediction for DASH over OFDMA. We first formulate an offline cross-layer optimization problem based on a novel quality of experience (QoE) model. Then the online reformulation is derived and proved to be asymptotically optimal. After analyzing the structure of the online problem, we propose a decomposition approach to obtain a user equipment (UE) rate adaptation problem and a BS resource allocation problem. We introduce stochastic model predictive control (SMPC) to achieve high robustness on video rate adaption and consider the request interval for more efficient resource allocation. Extensive simulations show that the proposed scheme can achieve a better QoE performance compared with other variations and a benchmark algorithm, which is mainly due to its lower rebuffering ratio and more stable bitrate choices.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Dynamic Adaptive Streaming over HTTP (DASH)</subject><subject>OFDM</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiple Access (OFDMA)</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Predictive control</subject><subject>Quality of experience</subject><subject>Quality of Experience (QoE)</subject><subject>rate adaptation</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Robustness</subject><subject>Servers</subject><subject>Stochastic models</subject><subject>Streaming media</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4MoOKfvgi8F34TWuyRtmsexbk5YLep8Dm2awKauM2k3_O_t6BAOfvfw_e7gI-QWIUIE-bjK84gCyohKKvs5IyOUHEMAIc77PaYQSopwSa683wAgj0GMyMNbU3W-DV6bWZi59d5sg2zyvgiKvXFBMc_ySfBi2kPjPv01ubDllzc3pxyTj_lsNV2Ey-LpeTpZhpox1oZJoq3UstIxoGUVlJpWVrI0SXmtOUoQsdUUNONogGtdI1pZWlOLSgpLKzYm98PdnWt-OuNbtWk6t-1fKsp4ioiciZ6CgdKu8d4Zq3Zu_V26X4WgjkZUb0QdjaiTkb5yN1TWxph_PBUpTQDZH6nFWds</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Xiao, Kefan</creator><creator>Mao, Shiwen</creator><creator>Tugnait, Jitendra K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7052-0007</orcidid></search><sort><creationdate>20200201</creationdate><title>Robust QoE-Driven DASH Over OFDMA Networks</title><author>Xiao, Kefan ; Mao, Shiwen ; Tugnait, Jitendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Dynamic Adaptive Streaming over HTTP (DASH)</topic><topic>OFDM</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiple Access (OFDMA)</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Predictive control</topic><topic>Quality of experience</topic><topic>Quality of Experience (QoE)</topic><topic>rate adaptation</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Robustness</topic><topic>Servers</topic><topic>Stochastic models</topic><topic>Streaming media</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Kefan</creatorcontrib><creatorcontrib>Mao, Shiwen</creatorcontrib><creatorcontrib>Tugnait, Jitendra K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Kefan</au><au>Mao, Shiwen</au><au>Tugnait, Jitendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust QoE-Driven DASH Over OFDMA Networks</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>22</volume><issue>2</issue><spage>474</spage><epage>486</epage><pages>474-486</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, the problem of effective and robust delivery of Dynamic Adaptive Streaming over HTTP (DASH) videos over an orthogonal frequency-division multiplexing access (OFDMA) network is studied. Motivated by a measurement study, we propose to explore the request interval and robust rate prediction for DASH over OFDMA. We first formulate an offline cross-layer optimization problem based on a novel quality of experience (QoE) model. Then the online reformulation is derived and proved to be asymptotically optimal. After analyzing the structure of the online problem, we propose a decomposition approach to obtain a user equipment (UE) rate adaptation problem and a BS resource allocation problem. We introduce stochastic model predictive control (SMPC) to achieve high robustness on video rate adaption and consider the request interval for more efficient resource allocation. Extensive simulations show that the proposed scheme can achieve a better QoE performance compared with other variations and a benchmark algorithm, which is mainly due to its lower rebuffering ratio and more stable bitrate choices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2019.2929929</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7052-0007</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2020-02, Vol.22 (2), p.474-486 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2348111437 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Computer simulation Dynamic Adaptive Streaming over HTTP (DASH) OFDM Optimization Orthogonal Frequency Division Multiple Access (OFDMA) Orthogonal Frequency Division Multiplexing Predictive control Quality of experience Quality of Experience (QoE) rate adaptation Resource allocation Resource management Robustness Servers Stochastic models Streaming media Videos |
title | Robust QoE-Driven DASH Over OFDMA Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20QoE-Driven%20DASH%20Over%20OFDMA%20Networks&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Xiao,%20Kefan&rft.date=2020-02-01&rft.volume=22&rft.issue=2&rft.spage=474&rft.epage=486&rft.pages=474-486&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2019.2929929&rft_dat=%3Cproquest_ieee_%3E2348111437%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-66cf9c9bc501f3b0ac2bf938684dc419075fc20c341e04ccd11f9afed7b97f2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348111437&rft_id=info:pmid/&rft_ieee_id=8782601&rfr_iscdi=true |