Loading…

To see C2: Single-photon ionization of the dicarbon molecule

The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2020-01, Vol.152 (4), p.041105-041105
Main Authors: Harper, Oliver J., Boyé-Péronne, Séverine, Garcia, Gustavo A., Hrodmarsson, Helgi R., Loison, Jean-Christophe, Gans, Bérenger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13
cites cdi_FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13
container_end_page 041105
container_issue 4
container_start_page 041105
container_title The Journal of chemical physics
container_volume 152
creator Harper, Oliver J.
Boyé-Péronne, Séverine
Garcia, Gustavo A.
Hrodmarsson, Helgi R.
Loison, Jean-Christophe
Gans, Bérenger
description The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.
doi_str_mv 10.1063/1.5139309
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2348121984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350356660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13</originalsourceid><addsrcrecordid>eNp90F9LwzAUBfAgCs7pg9-g4IsKnfcmbdqIL2P4DwY-OJ9Dmiauo2tq0gr66a1uKCj4dLjw43A5hBwjTBA4u8BJikwwEDtkhJCLOOMCdskIgGIsOPB9chDCCgAwo8mIXC1cFIyJZvQyeqya59rE7dJ1rokq11TvqhsicjbqliYqK618MdxrVxvd1-aQ7FlVB3O0zTF5urlezO7i-cPt_Ww6jzVDEDFXyBKeY6oTkWPGtQVeFkluGC9FmRWW05QpRguLKrWZQKUoVUKnSgDVBtmYnG56W-9eehM6ua6CNnWtGuP6IClLgaWccxjoyS-6cr1vhu8GleRIUeTJoM42SnsXgjdWtr5aK_8mEeTnjhLldsfBnm9s0FX3tcc3fnX-B8q2tP_hv80fb1195g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348121984</pqid></control><display><type>article</type><title>To see C2: Single-photon ionization of the dicarbon molecule</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Harper, Oliver J. ; Boyé-Péronne, Séverine ; Garcia, Gustavo A. ; Hrodmarsson, Helgi R. ; Loison, Jean-Christophe ; Gans, Bérenger</creator><creatorcontrib>Harper, Oliver J. ; Boyé-Péronne, Séverine ; Garcia, Gustavo A. ; Hrodmarsson, Helgi R. ; Loison, Jean-Christophe ; Gans, Bérenger</creatorcontrib><description>The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5139309</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adiabatic flow ; Astronomical models ; Cations ; Computer simulation ; Electric discharges ; Electron states ; Electron transitions ; Enthalpy ; Ground state ; Imaging techniques ; Ionization potentials ; Photochemistry ; Photons ; Synchrotron radiation ; Vapor phases</subject><ispartof>The Journal of chemical physics, 2020-01, Vol.152 (4), p.041105-041105</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13</citedby><cites>FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13</cites><orcidid>0000-0003-2915-2553 ; 0000-0003-0579-9571 ; 0000-0001-9658-2436 ; 0000-0001-7005-1821 ; 0000-0002-9613-5684 ; 0000-0001-8063-8685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5139309$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Harper, Oliver J.</creatorcontrib><creatorcontrib>Boyé-Péronne, Séverine</creatorcontrib><creatorcontrib>Garcia, Gustavo A.</creatorcontrib><creatorcontrib>Hrodmarsson, Helgi R.</creatorcontrib><creatorcontrib>Loison, Jean-Christophe</creatorcontrib><creatorcontrib>Gans, Bérenger</creatorcontrib><title>To see C2: Single-photon ionization of the dicarbon molecule</title><title>The Journal of chemical physics</title><description>The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.</description><subject>Adiabatic flow</subject><subject>Astronomical models</subject><subject>Cations</subject><subject>Computer simulation</subject><subject>Electric discharges</subject><subject>Electron states</subject><subject>Electron transitions</subject><subject>Enthalpy</subject><subject>Ground state</subject><subject>Imaging techniques</subject><subject>Ionization potentials</subject><subject>Photochemistry</subject><subject>Photons</subject><subject>Synchrotron radiation</subject><subject>Vapor phases</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90F9LwzAUBfAgCs7pg9-g4IsKnfcmbdqIL2P4DwY-OJ9Dmiauo2tq0gr66a1uKCj4dLjw43A5hBwjTBA4u8BJikwwEDtkhJCLOOMCdskIgGIsOPB9chDCCgAwo8mIXC1cFIyJZvQyeqya59rE7dJ1rokq11TvqhsicjbqliYqK618MdxrVxvd1-aQ7FlVB3O0zTF5urlezO7i-cPt_Ww6jzVDEDFXyBKeY6oTkWPGtQVeFkluGC9FmRWW05QpRguLKrWZQKUoVUKnSgDVBtmYnG56W-9eehM6ua6CNnWtGuP6IClLgaWccxjoyS-6cr1vhu8GleRIUeTJoM42SnsXgjdWtr5aK_8mEeTnjhLldsfBnm9s0FX3tcc3fnX-B8q2tP_hv80fb1195g</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Harper, Oliver J.</creator><creator>Boyé-Péronne, Séverine</creator><creator>Garcia, Gustavo A.</creator><creator>Hrodmarsson, Helgi R.</creator><creator>Loison, Jean-Christophe</creator><creator>Gans, Bérenger</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2915-2553</orcidid><orcidid>https://orcid.org/0000-0003-0579-9571</orcidid><orcidid>https://orcid.org/0000-0001-9658-2436</orcidid><orcidid>https://orcid.org/0000-0001-7005-1821</orcidid><orcidid>https://orcid.org/0000-0002-9613-5684</orcidid><orcidid>https://orcid.org/0000-0001-8063-8685</orcidid></search><sort><creationdate>20200131</creationdate><title>To see C2: Single-photon ionization of the dicarbon molecule</title><author>Harper, Oliver J. ; Boyé-Péronne, Séverine ; Garcia, Gustavo A. ; Hrodmarsson, Helgi R. ; Loison, Jean-Christophe ; Gans, Bérenger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adiabatic flow</topic><topic>Astronomical models</topic><topic>Cations</topic><topic>Computer simulation</topic><topic>Electric discharges</topic><topic>Electron states</topic><topic>Electron transitions</topic><topic>Enthalpy</topic><topic>Ground state</topic><topic>Imaging techniques</topic><topic>Ionization potentials</topic><topic>Photochemistry</topic><topic>Photons</topic><topic>Synchrotron radiation</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harper, Oliver J.</creatorcontrib><creatorcontrib>Boyé-Péronne, Séverine</creatorcontrib><creatorcontrib>Garcia, Gustavo A.</creatorcontrib><creatorcontrib>Hrodmarsson, Helgi R.</creatorcontrib><creatorcontrib>Loison, Jean-Christophe</creatorcontrib><creatorcontrib>Gans, Bérenger</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harper, Oliver J.</au><au>Boyé-Péronne, Séverine</au><au>Garcia, Gustavo A.</au><au>Hrodmarsson, Helgi R.</au><au>Loison, Jean-Christophe</au><au>Gans, Bérenger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>To see C2: Single-photon ionization of the dicarbon molecule</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-01-31</date><risdate>2020</risdate><volume>152</volume><issue>4</issue><spage>041105</spage><epage>041105</epage><pages>041105-041105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5139309</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2915-2553</orcidid><orcidid>https://orcid.org/0000-0003-0579-9571</orcidid><orcidid>https://orcid.org/0000-0001-9658-2436</orcidid><orcidid>https://orcid.org/0000-0001-7005-1821</orcidid><orcidid>https://orcid.org/0000-0002-9613-5684</orcidid><orcidid>https://orcid.org/0000-0001-8063-8685</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-01, Vol.152 (4), p.041105-041105
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2348121984
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Adiabatic flow
Astronomical models
Cations
Computer simulation
Electric discharges
Electron states
Electron transitions
Enthalpy
Ground state
Imaging techniques
Ionization potentials
Photochemistry
Photons
Synchrotron radiation
Vapor phases
title To see C2: Single-photon ionization of the dicarbon molecule
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=To%20see%20C2:%20Single-photon%20ionization%20of%20the%20dicarbon%20molecule&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Harper,%20Oliver%20J.&rft.date=2020-01-31&rft.volume=152&rft.issue=4&rft.spage=041105&rft.epage=041105&rft.pages=041105-041105&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5139309&rft_dat=%3Cproquest_scita%3E2350356660%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348121984&rft_id=info:pmid/&rfr_iscdi=true