Loading…
To see C2: Single-photon ionization of the dicarbon molecule
The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutr...
Saved in:
Published in: | The Journal of chemical physics 2020-01, Vol.152 (4), p.041105-041105 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13 |
---|---|
cites | cdi_FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13 |
container_end_page | 041105 |
container_issue | 4 |
container_start_page | 041105 |
container_title | The Journal of chemical physics |
container_volume | 152 |
creator | Harper, Oliver J. Boyé-Péronne, Séverine Garcia, Gustavo A. Hrodmarsson, Helgi R. Loison, Jean-Christophe Gans, Bérenger |
description | The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data. |
doi_str_mv | 10.1063/1.5139309 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2348121984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350356660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13</originalsourceid><addsrcrecordid>eNp90F9LwzAUBfAgCs7pg9-g4IsKnfcmbdqIL2P4DwY-OJ9Dmiauo2tq0gr66a1uKCj4dLjw43A5hBwjTBA4u8BJikwwEDtkhJCLOOMCdskIgGIsOPB9chDCCgAwo8mIXC1cFIyJZvQyeqya59rE7dJ1rokq11TvqhsicjbqliYqK618MdxrVxvd1-aQ7FlVB3O0zTF5urlezO7i-cPt_Ww6jzVDEDFXyBKeY6oTkWPGtQVeFkluGC9FmRWW05QpRguLKrWZQKUoVUKnSgDVBtmYnG56W-9eehM6ua6CNnWtGuP6IClLgaWccxjoyS-6cr1vhu8GleRIUeTJoM42SnsXgjdWtr5aK_8mEeTnjhLldsfBnm9s0FX3tcc3fnX-B8q2tP_hv80fb1195g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348121984</pqid></control><display><type>article</type><title>To see C2: Single-photon ionization of the dicarbon molecule</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Harper, Oliver J. ; Boyé-Péronne, Séverine ; Garcia, Gustavo A. ; Hrodmarsson, Helgi R. ; Loison, Jean-Christophe ; Gans, Bérenger</creator><creatorcontrib>Harper, Oliver J. ; Boyé-Péronne, Séverine ; Garcia, Gustavo A. ; Hrodmarsson, Helgi R. ; Loison, Jean-Christophe ; Gans, Bérenger</creatorcontrib><description>The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5139309</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adiabatic flow ; Astronomical models ; Cations ; Computer simulation ; Electric discharges ; Electron states ; Electron transitions ; Enthalpy ; Ground state ; Imaging techniques ; Ionization potentials ; Photochemistry ; Photons ; Synchrotron radiation ; Vapor phases</subject><ispartof>The Journal of chemical physics, 2020-01, Vol.152 (4), p.041105-041105</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13</citedby><cites>FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13</cites><orcidid>0000-0003-2915-2553 ; 0000-0003-0579-9571 ; 0000-0001-9658-2436 ; 0000-0001-7005-1821 ; 0000-0002-9613-5684 ; 0000-0001-8063-8685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5139309$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Harper, Oliver J.</creatorcontrib><creatorcontrib>Boyé-Péronne, Séverine</creatorcontrib><creatorcontrib>Garcia, Gustavo A.</creatorcontrib><creatorcontrib>Hrodmarsson, Helgi R.</creatorcontrib><creatorcontrib>Loison, Jean-Christophe</creatorcontrib><creatorcontrib>Gans, Bérenger</creatorcontrib><title>To see C2: Single-photon ionization of the dicarbon molecule</title><title>The Journal of chemical physics</title><description>The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.</description><subject>Adiabatic flow</subject><subject>Astronomical models</subject><subject>Cations</subject><subject>Computer simulation</subject><subject>Electric discharges</subject><subject>Electron states</subject><subject>Electron transitions</subject><subject>Enthalpy</subject><subject>Ground state</subject><subject>Imaging techniques</subject><subject>Ionization potentials</subject><subject>Photochemistry</subject><subject>Photons</subject><subject>Synchrotron radiation</subject><subject>Vapor phases</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90F9LwzAUBfAgCs7pg9-g4IsKnfcmbdqIL2P4DwY-OJ9Dmiauo2tq0gr66a1uKCj4dLjw43A5hBwjTBA4u8BJikwwEDtkhJCLOOMCdskIgGIsOPB9chDCCgAwo8mIXC1cFIyJZvQyeqya59rE7dJ1rokq11TvqhsicjbqliYqK618MdxrVxvd1-aQ7FlVB3O0zTF5urlezO7i-cPt_Ww6jzVDEDFXyBKeY6oTkWPGtQVeFkluGC9FmRWW05QpRguLKrWZQKUoVUKnSgDVBtmYnG56W-9eehM6ua6CNnWtGuP6IClLgaWccxjoyS-6cr1vhu8GleRIUeTJoM42SnsXgjdWtr5aK_8mEeTnjhLldsfBnm9s0FX3tcc3fnX-B8q2tP_hv80fb1195g</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Harper, Oliver J.</creator><creator>Boyé-Péronne, Séverine</creator><creator>Garcia, Gustavo A.</creator><creator>Hrodmarsson, Helgi R.</creator><creator>Loison, Jean-Christophe</creator><creator>Gans, Bérenger</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2915-2553</orcidid><orcidid>https://orcid.org/0000-0003-0579-9571</orcidid><orcidid>https://orcid.org/0000-0001-9658-2436</orcidid><orcidid>https://orcid.org/0000-0001-7005-1821</orcidid><orcidid>https://orcid.org/0000-0002-9613-5684</orcidid><orcidid>https://orcid.org/0000-0001-8063-8685</orcidid></search><sort><creationdate>20200131</creationdate><title>To see C2: Single-photon ionization of the dicarbon molecule</title><author>Harper, Oliver J. ; Boyé-Péronne, Séverine ; Garcia, Gustavo A. ; Hrodmarsson, Helgi R. ; Loison, Jean-Christophe ; Gans, Bérenger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adiabatic flow</topic><topic>Astronomical models</topic><topic>Cations</topic><topic>Computer simulation</topic><topic>Electric discharges</topic><topic>Electron states</topic><topic>Electron transitions</topic><topic>Enthalpy</topic><topic>Ground state</topic><topic>Imaging techniques</topic><topic>Ionization potentials</topic><topic>Photochemistry</topic><topic>Photons</topic><topic>Synchrotron radiation</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harper, Oliver J.</creatorcontrib><creatorcontrib>Boyé-Péronne, Séverine</creatorcontrib><creatorcontrib>Garcia, Gustavo A.</creatorcontrib><creatorcontrib>Hrodmarsson, Helgi R.</creatorcontrib><creatorcontrib>Loison, Jean-Christophe</creatorcontrib><creatorcontrib>Gans, Bérenger</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harper, Oliver J.</au><au>Boyé-Péronne, Séverine</au><au>Garcia, Gustavo A.</au><au>Hrodmarsson, Helgi R.</au><au>Loison, Jean-Christophe</au><au>Gans, Bérenger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>To see C2: Single-photon ionization of the dicarbon molecule</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-01-31</date><risdate>2020</risdate><volume>152</volume><issue>4</issue><spage>041105</spage><epage>041105</epage><pages>041105-041105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The C2 carbon cluster is found in a large variety of environments including flames, electric discharges, and astrophysical media. Due to spin-selection rules, assessing a complete overview of the dense vibronic landscape of the C2+ cation starting from the ground electronic state X Σg+1 of the neutral is not possible, especially since the C2+ ground state is of X+ Σg−4 symmetry. In this work, a flow-tube reactor source is employed to generate the neutral C2 in a mixture of both the lowest singlet X Σg+1 and triplet a 3Πu electronic states. We have investigated the vibronic transitions in the vicinity of the first adiabatic ionization potential via one-photon ionization with vacuum ultraviolet synchrotron radiation coupled with electron/ion double imaging techniques. Using ab initio calculations and Franck-Condon simulations, three electronic transitions are identified and their adiabatic ionization energy is determined Ei(a+ 2Πu←X 1Σg+)=12.440(10) eV, Ei(X+ 4Σg−←a 3Πu)=11.795(10) eV, and Ei(a+2Πu ← a3Πu) = 12.361(10) eV. From the three origin bands, the following energy differences are extracted: ΔE(a − X) = 0.079(10) eV and ΔE(a+ − X+) = 0.567(10) eV. The adiabatic ionization potential corresponding to the forbidden one-photon transition X+ ← X is derived and amounts to 11.873(10) eV, in very good agreement with the most recent measurement by Krechkivska et al. [J. Chem. Phys. 144, 144305 (2016)]. The enthalpy of formation of the doublet ground state C2+ cation in the gas phase is determined at 0 K, ΔfH0(0K)(C2+(Πu2))=2019.9(10) kJ mol−1. In addition, we report the first experimental ion yield of C2 for which only a simple estimate was used up to now in the photochemistry models of astrophysical media due to the lack of experimental data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5139309</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2915-2553</orcidid><orcidid>https://orcid.org/0000-0003-0579-9571</orcidid><orcidid>https://orcid.org/0000-0001-9658-2436</orcidid><orcidid>https://orcid.org/0000-0001-7005-1821</orcidid><orcidid>https://orcid.org/0000-0002-9613-5684</orcidid><orcidid>https://orcid.org/0000-0001-8063-8685</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-01, Vol.152 (4), p.041105-041105 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2348121984 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Adiabatic flow Astronomical models Cations Computer simulation Electric discharges Electron states Electron transitions Enthalpy Ground state Imaging techniques Ionization potentials Photochemistry Photons Synchrotron radiation Vapor phases |
title | To see C2: Single-photon ionization of the dicarbon molecule |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=To%20see%20C2:%20Single-photon%20ionization%20of%20the%20dicarbon%20molecule&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Harper,%20Oliver%20J.&rft.date=2020-01-31&rft.volume=152&rft.issue=4&rft.spage=041105&rft.epage=041105&rft.pages=041105-041105&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5139309&rft_dat=%3Cproquest_scita%3E2350356660%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3109-6a1346815c498176cf06db48e36d9d7bf6253a32bf1a5f791aa22a9c5a902ce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348121984&rft_id=info:pmid/&rfr_iscdi=true |