Loading…
Experimental demonstration of one-sided device-independent self-testing of any pure two-qubit entangled state
We demonstrate one-sided device-independent self-testing of any pure entangled two-qubit state based on a fine-grained steering inequality. The maximum violation of a fine-grained steering inequality can be used to witness certain steerable correlations, which certify all pure two-qubit entangled st...
Saved in:
Published in: | arXiv.org 2020-01 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate one-sided device-independent self-testing of any pure entangled two-qubit state based on a fine-grained steering inequality. The maximum violation of a fine-grained steering inequality can be used to witness certain steerable correlations, which certify all pure two-qubit entangled states. Our experimental results identify which particular pure two-qubit entangled state has been self-tested and which measurement operators are used on the untrusted side. Furthermore, we analytically derive the robustness bound of our protocol, enabling our subsequent experimental verification of robustness through state tomography. Finally, we ensure that the requisite no-signalling constraints are maintained in the experiment. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2001.10207 |