Loading…
Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures
A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial...
Saved in:
Published in: | Journal of mathematical physics 2020-01, Vol.61 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 61 |
creator | Grillo, Sergio Padrón, Edith |
description | A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds. |
doi_str_mv | 10.1063/1.5133153 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2348472296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348472296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuFI6NX-dSZZSqlUKbtRtyCQZTZlO2iQjzs538A19EkdadCG4upuPcw8HgFOMxhjl9BKPJ5hSPKF7YIARF1mRT_g-GCBESEYY54fgKMYlQhhzxgbgafaWbGOsgXO1cnXyzef7x53SvnQwvVgfuhHUvklKJ7hSjat8beIIqsZA1yT7HFTpapc6WHZw0yoTVGqDjcfgoFJ1tCe7OwSP17OH6Txb3N_cTq8WmaY5SRlmSOi-rlA5MhSJSomiIn1tizSjghHBbMVowTQpSKk5wqakuuBlIfIS54QOwdk2dx38prUxyaVvQ9O_lIQyzgpCRN6r863SwccYbCXXwa1U6CRG8ns2ieVutt5ebG3ULqnkfPODX334hXJtqv_w3-Qvpet7RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348472296</pqid></control><display><type>article</type><title>Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Grillo, Sergio ; Padrón, Edith</creator><creatorcontrib>Grillo, Sergio ; Padrón, Edith</creatorcontrib><description>A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5133153</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Chaos theory ; Equations of motion ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Hamiltonian functions ; Manifolds (mathematics) ; Physics ; Quadratures</subject><ispartof>Journal of mathematical physics, 2020-01, Vol.61 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623</citedby><cites>FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623</cites><orcidid>0000-0002-4808-4632 ; 0000-0001-6871-7997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5133153$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Grillo, Sergio</creatorcontrib><creatorcontrib>Padrón, Edith</creatorcontrib><title>Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures</title><title>Journal of mathematical physics</title><description>A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.</description><subject>Chaos theory</subject><subject>Equations of motion</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hamiltonian functions</subject><subject>Manifolds (mathematics)</subject><subject>Physics</subject><subject>Quadratures</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuFI6NX-dSZZSqlUKbtRtyCQZTZlO2iQjzs538A19EkdadCG4upuPcw8HgFOMxhjl9BKPJ5hSPKF7YIARF1mRT_g-GCBESEYY54fgKMYlQhhzxgbgafaWbGOsgXO1cnXyzef7x53SvnQwvVgfuhHUvklKJ7hSjat8beIIqsZA1yT7HFTpapc6WHZw0yoTVGqDjcfgoFJ1tCe7OwSP17OH6Txb3N_cTq8WmaY5SRlmSOi-rlA5MhSJSomiIn1tizSjghHBbMVowTQpSKk5wqakuuBlIfIS54QOwdk2dx38prUxyaVvQ9O_lIQyzgpCRN6r863SwccYbCXXwa1U6CRG8ns2ieVutt5ebG3ULqnkfPODX334hXJtqv_w3-Qvpet7RA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Grillo, Sergio</creator><creator>Padrón, Edith</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4808-4632</orcidid><orcidid>https://orcid.org/0000-0001-6871-7997</orcidid></search><sort><creationdate>20200101</creationdate><title>Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures</title><author>Grillo, Sergio ; Padrón, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chaos theory</topic><topic>Equations of motion</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hamiltonian functions</topic><topic>Manifolds (mathematics)</topic><topic>Physics</topic><topic>Quadratures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grillo, Sergio</creatorcontrib><creatorcontrib>Padrón, Edith</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grillo, Sergio</au><au>Padrón, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>61</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5133153</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4808-4632</orcidid><orcidid>https://orcid.org/0000-0001-6871-7997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2020-01, Vol.61 (1) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2348472296 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Chaos theory Equations of motion Fluid dynamics Fluid flow Fluid mechanics Hamiltonian functions Manifolds (mathematics) Physics Quadratures |
title | Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Hamilton%E2%80%93Jacobi%20theory,%20contact%20manifolds,%20and%20integrability%20by%20quadratures&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Grillo,%20Sergio&rft.date=2020-01-01&rft.volume=61&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5133153&rft_dat=%3Cproquest_cross%3E2348472296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348472296&rft_id=info:pmid/&rfr_iscdi=true |