Loading…

Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures

A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2020-01, Vol.61 (1)
Main Authors: Grillo, Sergio, Padrón, Edith
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623
cites cdi_FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical physics
container_volume 61
creator Grillo, Sergio
Padrón, Edith
description A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.
doi_str_mv 10.1063/1.5133153
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2348472296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348472296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuFI6NX-dSZZSqlUKbtRtyCQZTZlO2iQjzs538A19EkdadCG4upuPcw8HgFOMxhjl9BKPJ5hSPKF7YIARF1mRT_g-GCBESEYY54fgKMYlQhhzxgbgafaWbGOsgXO1cnXyzef7x53SvnQwvVgfuhHUvklKJ7hSjat8beIIqsZA1yT7HFTpapc6WHZw0yoTVGqDjcfgoFJ1tCe7OwSP17OH6Txb3N_cTq8WmaY5SRlmSOi-rlA5MhSJSomiIn1tizSjghHBbMVowTQpSKk5wqakuuBlIfIS54QOwdk2dx38prUxyaVvQ9O_lIQyzgpCRN6r863SwccYbCXXwa1U6CRG8ns2ieVutt5ebG3ULqnkfPODX334hXJtqv_w3-Qvpet7RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348472296</pqid></control><display><type>article</type><title>Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Grillo, Sergio ; Padrón, Edith</creator><creatorcontrib>Grillo, Sergio ; Padrón, Edith</creatorcontrib><description>A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5133153</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Chaos theory ; Equations of motion ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Hamiltonian functions ; Manifolds (mathematics) ; Physics ; Quadratures</subject><ispartof>Journal of mathematical physics, 2020-01, Vol.61 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623</citedby><cites>FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623</cites><orcidid>0000-0002-4808-4632 ; 0000-0001-6871-7997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5133153$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Grillo, Sergio</creatorcontrib><creatorcontrib>Padrón, Edith</creatorcontrib><title>Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures</title><title>Journal of mathematical physics</title><description>A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.</description><subject>Chaos theory</subject><subject>Equations of motion</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hamiltonian functions</subject><subject>Manifolds (mathematics)</subject><subject>Physics</subject><subject>Quadratures</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuFI6NX-dSZZSqlUKbtRtyCQZTZlO2iQjzs538A19EkdadCG4upuPcw8HgFOMxhjl9BKPJ5hSPKF7YIARF1mRT_g-GCBESEYY54fgKMYlQhhzxgbgafaWbGOsgXO1cnXyzef7x53SvnQwvVgfuhHUvklKJ7hSjat8beIIqsZA1yT7HFTpapc6WHZw0yoTVGqDjcfgoFJ1tCe7OwSP17OH6Txb3N_cTq8WmaY5SRlmSOi-rlA5MhSJSomiIn1tizSjghHBbMVowTQpSKk5wqakuuBlIfIS54QOwdk2dx38prUxyaVvQ9O_lIQyzgpCRN6r863SwccYbCXXwa1U6CRG8ns2ieVutt5ebG3ULqnkfPODX334hXJtqv_w3-Qvpet7RA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Grillo, Sergio</creator><creator>Padrón, Edith</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4808-4632</orcidid><orcidid>https://orcid.org/0000-0001-6871-7997</orcidid></search><sort><creationdate>20200101</creationdate><title>Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures</title><author>Grillo, Sergio ; Padrón, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chaos theory</topic><topic>Equations of motion</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hamiltonian functions</topic><topic>Manifolds (mathematics)</topic><topic>Physics</topic><topic>Quadratures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grillo, Sergio</creatorcontrib><creatorcontrib>Padrón, Edith</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grillo, Sergio</au><au>Padrón, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>61</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5133153</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4808-4632</orcidid><orcidid>https://orcid.org/0000-0001-6871-7997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2020-01, Vol.61 (1)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2348472296
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Chaos theory
Equations of motion
Fluid dynamics
Fluid flow
Fluid mechanics
Hamiltonian functions
Manifolds (mathematics)
Physics
Quadratures
title Extended Hamilton–Jacobi theory, contact manifolds, and integrability by quadratures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Hamilton%E2%80%93Jacobi%20theory,%20contact%20manifolds,%20and%20integrability%20by%20quadratures&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Grillo,%20Sergio&rft.date=2020-01-01&rft.volume=61&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5133153&rft_dat=%3Cproquest_cross%3E2348472296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-1409c3319a60d309fa97f2089e0c4394294ef4374c272bc801db3c78b796b1623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348472296&rft_id=info:pmid/&rfr_iscdi=true