Loading…
Predicting Large-Chern-Number Phases in a Shaken Optical Dice Lattice
With respect to the quantum anomalous Hall effect (QAHE), the detection of topological nontrivial large-Chern-number phases is an intriguing subject. Motivated by recent research on Floquet topological phases, this study proposes a periodic driving protocol to engineer large-Chern-number phases usin...
Saved in:
Published in: | arXiv.org 2020-01 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cheng, Shujie Yin, Honghao Lu, Zhanpeng He, Chaocheng Wang, Pei Gao Xianlong |
description | With respect to the quantum anomalous Hall effect (QAHE), the detection of topological nontrivial large-Chern-number phases is an intriguing subject. Motivated by recent research on Floquet topological phases, this study proposes a periodic driving protocol to engineer large-Chern-number phases using QAHE. Herein, spinless ultracold fermionic atoms are studied in a two-dimensional optical dice lattice with nearest-neighbor hopping and a \(\Lambda\)/V-type sublattice potential subjected to a circular driving force. Results suggest that large-Chern-number phases exist with Chern numbers equal to \(C=-2\), which is consistent with the edge-state energy spectra. |
doi_str_mv | 10.48550/arxiv.2001.10842 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2348674132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348674132</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-653f352dffdc9e48c63e06103f20bd003a78724b4a102af2e15f693f25d6edc03</originalsourceid><addsrcrecordid>eNotjU9Lw0AUxBdBsNR-AG8Lnje-ffsn6VFi1UKwBXsvm-zbZmtN6yYRP74BPc0MP2aGsTsJmS6MgQeXfuJ3hgAyk1BovGIzVEqKyeINW_T9EQDQ5miMmrHVNpGPzRC7A69cOpAoW0qdeBs_a0p827qeeh477vh76z6o45vLEBt34k-xoakyTIlu2XVwp54W_zpnu-fVrnwV1eZlXT5WwhlEYY0KyqAPwTdL0kVjFYGVoAJC7QGUy4scda2dBHQBSZpglxM13pJvQM3Z_d_sJZ2_RuqH_fE8pm563KPShc21VKh-AT7xSx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348674132</pqid></control><display><type>article</type><title>Predicting Large-Chern-Number Phases in a Shaken Optical Dice Lattice</title><source>Publicly Available Content Database</source><creator>Cheng, Shujie ; Yin, Honghao ; Lu, Zhanpeng ; He, Chaocheng ; Wang, Pei ; Gao Xianlong</creator><creatorcontrib>Cheng, Shujie ; Yin, Honghao ; Lu, Zhanpeng ; He, Chaocheng ; Wang, Pei ; Gao Xianlong</creatorcontrib><description>With respect to the quantum anomalous Hall effect (QAHE), the detection of topological nontrivial large-Chern-number phases is an intriguing subject. Motivated by recent research on Floquet topological phases, this study proposes a periodic driving protocol to engineer large-Chern-number phases using QAHE. Herein, spinless ultracold fermionic atoms are studied in a two-dimensional optical dice lattice with nearest-neighbor hopping and a \(\Lambda\)/V-type sublattice potential subjected to a circular driving force. Results suggest that large-Chern-number phases exist with Chern numbers equal to \(C=-2\), which is consistent with the edge-state energy spectra.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2001.10842</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic properties ; Energy spectra ; Phases ; Quantum Hall effect ; Topology</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2348674132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cheng, Shujie</creatorcontrib><creatorcontrib>Yin, Honghao</creatorcontrib><creatorcontrib>Lu, Zhanpeng</creatorcontrib><creatorcontrib>He, Chaocheng</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Gao Xianlong</creatorcontrib><title>Predicting Large-Chern-Number Phases in a Shaken Optical Dice Lattice</title><title>arXiv.org</title><description>With respect to the quantum anomalous Hall effect (QAHE), the detection of topological nontrivial large-Chern-number phases is an intriguing subject. Motivated by recent research on Floquet topological phases, this study proposes a periodic driving protocol to engineer large-Chern-number phases using QAHE. Herein, spinless ultracold fermionic atoms are studied in a two-dimensional optical dice lattice with nearest-neighbor hopping and a \(\Lambda\)/V-type sublattice potential subjected to a circular driving force. Results suggest that large-Chern-number phases exist with Chern numbers equal to \(C=-2\), which is consistent with the edge-state energy spectra.</description><subject>Atomic properties</subject><subject>Energy spectra</subject><subject>Phases</subject><subject>Quantum Hall effect</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU9Lw0AUxBdBsNR-AG8Lnje-ffsn6VFi1UKwBXsvm-zbZmtN6yYRP74BPc0MP2aGsTsJmS6MgQeXfuJ3hgAyk1BovGIzVEqKyeINW_T9EQDQ5miMmrHVNpGPzRC7A69cOpAoW0qdeBs_a0p827qeeh477vh76z6o45vLEBt34k-xoakyTIlu2XVwp54W_zpnu-fVrnwV1eZlXT5WwhlEYY0KyqAPwTdL0kVjFYGVoAJC7QGUy4scda2dBHQBSZpglxM13pJvQM3Z_d_sJZ2_RuqH_fE8pm563KPShc21VKh-AT7xSx0</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Cheng, Shujie</creator><creator>Yin, Honghao</creator><creator>Lu, Zhanpeng</creator><creator>He, Chaocheng</creator><creator>Wang, Pei</creator><creator>Gao Xianlong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200129</creationdate><title>Predicting Large-Chern-Number Phases in a Shaken Optical Dice Lattice</title><author>Cheng, Shujie ; Yin, Honghao ; Lu, Zhanpeng ; He, Chaocheng ; Wang, Pei ; Gao Xianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-653f352dffdc9e48c63e06103f20bd003a78724b4a102af2e15f693f25d6edc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic properties</topic><topic>Energy spectra</topic><topic>Phases</topic><topic>Quantum Hall effect</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Shujie</creatorcontrib><creatorcontrib>Yin, Honghao</creatorcontrib><creatorcontrib>Lu, Zhanpeng</creatorcontrib><creatorcontrib>He, Chaocheng</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Gao Xianlong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Shujie</au><au>Yin, Honghao</au><au>Lu, Zhanpeng</au><au>He, Chaocheng</au><au>Wang, Pei</au><au>Gao Xianlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Large-Chern-Number Phases in a Shaken Optical Dice Lattice</atitle><jtitle>arXiv.org</jtitle><date>2020-01-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>With respect to the quantum anomalous Hall effect (QAHE), the detection of topological nontrivial large-Chern-number phases is an intriguing subject. Motivated by recent research on Floquet topological phases, this study proposes a periodic driving protocol to engineer large-Chern-number phases using QAHE. Herein, spinless ultracold fermionic atoms are studied in a two-dimensional optical dice lattice with nearest-neighbor hopping and a \(\Lambda\)/V-type sublattice potential subjected to a circular driving force. Results suggest that large-Chern-number phases exist with Chern numbers equal to \(C=-2\), which is consistent with the edge-state energy spectra.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2001.10842</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2348674132 |
source | Publicly Available Content Database |
subjects | Atomic properties Energy spectra Phases Quantum Hall effect Topology |
title | Predicting Large-Chern-Number Phases in a Shaken Optical Dice Lattice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Large-Chern-Number%20Phases%20in%20a%20Shaken%20Optical%20Dice%20Lattice&rft.jtitle=arXiv.org&rft.au=Cheng,%20Shujie&rft.date=2020-01-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2001.10842&rft_dat=%3Cproquest%3E2348674132%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-653f352dffdc9e48c63e06103f20bd003a78724b4a102af2e15f693f25d6edc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348674132&rft_id=info:pmid/&rfr_iscdi=true |