Loading…

Geochemical evidence for an orogenic plateau in the Southern U.S. and northern Mexican Cordillera during the Laramide Orogeny

Previous studies of the central United States Cordillera have indicated that a high-elevation orogenic plateau, the Nevadaplano, was present in Late Cretaceous to early Paleogene time. The southern United States Cordillera and northern Mexican Cordillera share a similar geologic history and many of...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2020-02, Vol.48 (2), p.164-168
Main Authors: Chapman, James B, Greig, Roy, Haxel, Gordon B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous studies of the central United States Cordillera have indicated that a high-elevation orogenic plateau, the Nevadaplano, was present in Late Cretaceous to early Paleogene time. The southern United States Cordillera and northern Mexican Cordillera share a similar geologic history and many of the same tectonic features (e.g., metamorphic core complexes) as the central United States Cordillera, raising the possibility that a similar plateau may have been present at lower latitudes. To test the hypothesis of an elevated plateau, we examined Laramide-age continental-arc geochemistry and employed an empirical relation between whole-rock La/Yb and Moho depth as a proxy for crustal thickness. Calculations of crustal thickness from individual data points range between 45 and 72 km, with an average of 57 ± 12 km (2σ) for the entire data set, which corresponds to 3 ± 1.8 km paleoelevation assuming simple Airy isostasy. These crustal thickness and paleoaltimetry estimates are similar to previous estimates for the Nevadaplano and are interpreted to suggest that an analogous high-elevation plateau may have been present in the southern United States Cordillera. This result raises questions about the mechanisms that thickened the crust, because shortening in the Sevier thrust belt is generally not thought to have extended into the southern United States Cordillera, south of ∼35°N latitude.
ISSN:0091-7613
1943-2682
DOI:10.1130/G47117.1