Loading…
Intweetive Text Summarization
The amount of user generated contents from various social medias allows analyst to handle a wide view of conversations on several topics related to their business. Nevertheless keeping up-to-date with this amount of information is not humanly feasible. Automatic Summarization then provides an intere...
Saved in:
Published in: | arXiv.org 2020-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cossu, Jean Valère Torres-Moreno, Juan-Manuel SanJuan, Eric El-Bèze, Marc |
description | The amount of user generated contents from various social medias allows analyst to handle a wide view of conversations on several topics related to their business. Nevertheless keeping up-to-date with this amount of information is not humanly feasible. Automatic Summarization then provides an interesting mean to digest the dynamics and the mass volume of contents. In this paper, we address the issue of tweets summarization which remains scarcely explored. We propose to automatically generated summaries of Micro-Blogs conversations dealing with public figures E-Reputation. These summaries are generated using key-word queries or sample tweet and offer a focused view of the whole Micro-Blog network. Since state-of-the-art is lacking on this point we conduct and evaluate our experiments over the multilingual CLEF RepLab Topic-Detection dataset according to an experimental evaluation process. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2349066027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349066027</sourcerecordid><originalsourceid>FETCH-proquest_journals_23490660273</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9cwrKU9NLcksS1UISa0oUQguzc1NLMqsSizJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I2MTSwMzMwMjc2PiVAEAjC8sbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349066027</pqid></control><display><type>article</type><title>Intweetive Text Summarization</title><source>Publicly Available Content (ProQuest)</source><creator>Cossu, Jean Valère ; Torres-Moreno, Juan-Manuel ; SanJuan, Eric ; El-Bèze, Marc</creator><creatorcontrib>Cossu, Jean Valère ; Torres-Moreno, Juan-Manuel ; SanJuan, Eric ; El-Bèze, Marc</creatorcontrib><description>The amount of user generated contents from various social medias allows analyst to handle a wide view of conversations on several topics related to their business. Nevertheless keeping up-to-date with this amount of information is not humanly feasible. Automatic Summarization then provides an interesting mean to digest the dynamics and the mass volume of contents. In this paper, we address the issue of tweets summarization which remains scarcely explored. We propose to automatically generated summaries of Micro-Blogs conversations dealing with public figures E-Reputation. These summaries are generated using key-word queries or sample tweet and offer a focused view of the whole Micro-Blog network. Since state-of-the-art is lacking on this point we conduct and evaluate our experiments over the multilingual CLEF RepLab Topic-Detection dataset according to an experimental evaluation process.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Social networks ; Summaries</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2349066027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Cossu, Jean Valère</creatorcontrib><creatorcontrib>Torres-Moreno, Juan-Manuel</creatorcontrib><creatorcontrib>SanJuan, Eric</creatorcontrib><creatorcontrib>El-Bèze, Marc</creatorcontrib><title>Intweetive Text Summarization</title><title>arXiv.org</title><description>The amount of user generated contents from various social medias allows analyst to handle a wide view of conversations on several topics related to their business. Nevertheless keeping up-to-date with this amount of information is not humanly feasible. Automatic Summarization then provides an interesting mean to digest the dynamics and the mass volume of contents. In this paper, we address the issue of tweets summarization which remains scarcely explored. We propose to automatically generated summaries of Micro-Blogs conversations dealing with public figures E-Reputation. These summaries are generated using key-word queries or sample tweet and offer a focused view of the whole Micro-Blog network. Since state-of-the-art is lacking on this point we conduct and evaluate our experiments over the multilingual CLEF RepLab Topic-Detection dataset according to an experimental evaluation process.</description><subject>Social networks</subject><subject>Summaries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9cwrKU9NLcksS1UISa0oUQguzc1NLMqsSizJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I2MTSwMzMwMjc2PiVAEAjC8sbA</recordid><startdate>20200116</startdate><enddate>20200116</enddate><creator>Cossu, Jean Valère</creator><creator>Torres-Moreno, Juan-Manuel</creator><creator>SanJuan, Eric</creator><creator>El-Bèze, Marc</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200116</creationdate><title>Intweetive Text Summarization</title><author>Cossu, Jean Valère ; Torres-Moreno, Juan-Manuel ; SanJuan, Eric ; El-Bèze, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23490660273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Social networks</topic><topic>Summaries</topic><toplevel>online_resources</toplevel><creatorcontrib>Cossu, Jean Valère</creatorcontrib><creatorcontrib>Torres-Moreno, Juan-Manuel</creatorcontrib><creatorcontrib>SanJuan, Eric</creatorcontrib><creatorcontrib>El-Bèze, Marc</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cossu, Jean Valère</au><au>Torres-Moreno, Juan-Manuel</au><au>SanJuan, Eric</au><au>El-Bèze, Marc</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Intweetive Text Summarization</atitle><jtitle>arXiv.org</jtitle><date>2020-01-16</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The amount of user generated contents from various social medias allows analyst to handle a wide view of conversations on several topics related to their business. Nevertheless keeping up-to-date with this amount of information is not humanly feasible. Automatic Summarization then provides an interesting mean to digest the dynamics and the mass volume of contents. In this paper, we address the issue of tweets summarization which remains scarcely explored. We propose to automatically generated summaries of Micro-Blogs conversations dealing with public figures E-Reputation. These summaries are generated using key-word queries or sample tweet and offer a focused view of the whole Micro-Blog network. Since state-of-the-art is lacking on this point we conduct and evaluate our experiments over the multilingual CLEF RepLab Topic-Detection dataset according to an experimental evaluation process.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2349066027 |
source | Publicly Available Content (ProQuest) |
subjects | Social networks Summaries |
title | Intweetive Text Summarization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Intweetive%20Text%20Summarization&rft.jtitle=arXiv.org&rft.au=Cossu,%20Jean%20Val%C3%A8re&rft.date=2020-01-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2349066027%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23490660273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2349066027&rft_id=info:pmid/&rfr_iscdi=true |