Loading…

Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation

In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then consider...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2020, Vol.30 (1), p.777-833
Main Authors: Bleher, Pavel, Lyubich, Mikhail, Roeder, Roland
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23
cites cdi_FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23
container_end_page 833
container_issue 1
container_start_page 777
container_title The Journal of geometric analysis
container_volume 30
creator Bleher, Pavel
Lyubich, Mikhail
Roeder, Roland
description In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee–Yang–Fisher (LYF) zeros. In this paper, we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function R in two variables (the Migdal–Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the LYF zeros are equidistributed with respect to a dynamical (1, 1)-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal–Kadanoff renormalization transformation of various other hierarchical lattices.
doi_str_mv 10.1007/s12220-019-00167-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2349195446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349195446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23</originalsourceid><addsrcrecordid>eNp9UEtOwzAUtBBIlMIFWFliS4rt2E6zRJS2kSKBEEjAxnLilzZVmhTbXXTHHbghJ8FtkNixmveb0ZtB6JKSESUkuXGUMUYiQtOIECqTSB6hARVi37LX41ATQSKZMnmKzpxbEcJlzJMBWuYA359fb7pdBJjWbgkWv4PtHK46i_0S8GSeY90azCb4Sfu6a3WDJ7tWr-vSXeMsG-FZ0xVh-Nhsbb3pPLS-Dm3WerAbC_5AOkcnlW4cXPziEL1M75_v5lH-MMvubvOojMXYRyChNEWSGqBSc56ykiSSEh5LIcaV1qlMSAUx1xCWlamENNSYghVGy4JqFg_RVa-7sd3HFpxXq25rw89OsZinNBU8WB8i1l-VwamzUKmNrdfa7hQlap-o6hNVIVF1SFTtSXFPcuG4XYD9k_6H9QMKRnrF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349195446</pqid></control><display><type>article</type><title>Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation</title><source>Springer Nature</source><creator>Bleher, Pavel ; Lyubich, Mikhail ; Roeder, Roland</creator><creatorcontrib>Bleher, Pavel ; Lyubich, Mikhail ; Roeder, Roland</creatorcontrib><description>In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee–Yang–Fisher (LYF) zeros. In this paper, we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function R in two variables (the Migdal–Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the LYF zeros are equidistributed with respect to a dynamical (1, 1)-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal–Kadanoff renormalization transformation of various other hierarchical lattices.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-019-00167-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Constraining ; Convex and Discrete Geometry ; Diamonds ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Ferromagnetism ; Fourier Analysis ; Free energy ; Geometry ; Global Analysis and Analysis on Manifolds ; Ising model ; Lattices (mathematics) ; Magnetic fields ; Mathematics ; Mathematics and Statistics ; Partitions (mathematics) ; Phase transitions ; Rational functions ; Transformations (mathematics)</subject><ispartof>The Journal of geometric analysis, 2020, Vol.30 (1), p.777-833</ispartof><rights>Mathematica Josephina, Inc. 2019</rights><rights>2019© Mathematica Josephina, Inc. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23</citedby><cites>FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23</cites><orcidid>0000-0002-4623-2590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bleher, Pavel</creatorcontrib><creatorcontrib>Lyubich, Mikhail</creatorcontrib><creatorcontrib>Roeder, Roland</creatorcontrib><title>Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee–Yang–Fisher (LYF) zeros. In this paper, we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function R in two variables (the Migdal–Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the LYF zeros are equidistributed with respect to a dynamical (1, 1)-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal–Kadanoff renormalization transformation of various other hierarchical lattices.</description><subject>Abstract Harmonic Analysis</subject><subject>Constraining</subject><subject>Convex and Discrete Geometry</subject><subject>Diamonds</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Ferromagnetism</subject><subject>Fourier Analysis</subject><subject>Free energy</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Ising model</subject><subject>Lattices (mathematics)</subject><subject>Magnetic fields</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partitions (mathematics)</subject><subject>Phase transitions</subject><subject>Rational functions</subject><subject>Transformations (mathematics)</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UEtOwzAUtBBIlMIFWFliS4rt2E6zRJS2kSKBEEjAxnLilzZVmhTbXXTHHbghJ8FtkNixmveb0ZtB6JKSESUkuXGUMUYiQtOIECqTSB6hARVi37LX41ATQSKZMnmKzpxbEcJlzJMBWuYA359fb7pdBJjWbgkWv4PtHK46i_0S8GSeY90azCb4Sfu6a3WDJ7tWr-vSXeMsG-FZ0xVh-Nhsbb3pPLS-Dm3WerAbC_5AOkcnlW4cXPziEL1M75_v5lH-MMvubvOojMXYRyChNEWSGqBSc56ykiSSEh5LIcaV1qlMSAUx1xCWlamENNSYghVGy4JqFg_RVa-7sd3HFpxXq25rw89OsZinNBU8WB8i1l-VwamzUKmNrdfa7hQlap-o6hNVIVF1SFTtSXFPcuG4XYD9k_6H9QMKRnrF</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bleher, Pavel</creator><creator>Lyubich, Mikhail</creator><creator>Roeder, Roland</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4623-2590</orcidid></search><sort><creationdate>2020</creationdate><title>Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation</title><author>Bleher, Pavel ; Lyubich, Mikhail ; Roeder, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Constraining</topic><topic>Convex and Discrete Geometry</topic><topic>Diamonds</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Ferromagnetism</topic><topic>Fourier Analysis</topic><topic>Free energy</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Ising model</topic><topic>Lattices (mathematics)</topic><topic>Magnetic fields</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partitions (mathematics)</topic><topic>Phase transitions</topic><topic>Rational functions</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bleher, Pavel</creatorcontrib><creatorcontrib>Lyubich, Mikhail</creatorcontrib><creatorcontrib>Roeder, Roland</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bleher, Pavel</au><au>Lyubich, Mikhail</au><au>Roeder, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2020</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><spage>777</spage><epage>833</epage><pages>777-833</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee–Yang–Fisher (LYF) zeros. In this paper, we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function R in two variables (the Migdal–Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the LYF zeros are equidistributed with respect to a dynamical (1, 1)-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal–Kadanoff renormalization transformation of various other hierarchical lattices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-019-00167-6</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0002-4623-2590</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2020, Vol.30 (1), p.777-833
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2349195446
source Springer Nature
subjects Abstract Harmonic Analysis
Constraining
Convex and Discrete Geometry
Diamonds
Differential Geometry
Dynamical Systems and Ergodic Theory
Ferromagnetism
Fourier Analysis
Free energy
Geometry
Global Analysis and Analysis on Manifolds
Ising model
Lattices (mathematics)
Magnetic fields
Mathematics
Mathematics and Statistics
Partitions (mathematics)
Phase transitions
Rational functions
Transformations (mathematics)
title Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lee%E2%80%93Yang%E2%80%93Fisher%20Zeros%20for%20the%20DHL%20and%202D%20Rational%20Dynamics,%20II.%20Global%20Pluripotential%20Interpretation&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Bleher,%20Pavel&rft.date=2020&rft.volume=30&rft.issue=1&rft.spage=777&rft.epage=833&rft.pages=777-833&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-019-00167-6&rft_dat=%3Cproquest_cross%3E2349195446%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2349195446&rft_id=info:pmid/&rfr_iscdi=true