Loading…
Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation
In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then consider...
Saved in:
Published in: | The Journal of geometric analysis 2020, Vol.30 (1), p.777-833 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23 |
container_end_page | 833 |
container_issue | 1 |
container_start_page | 777 |
container_title | The Journal of geometric analysis |
container_volume | 30 |
creator | Bleher, Pavel Lyubich, Mikhail Roeder, Roland |
description | In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee–Yang–Fisher (LYF) zeros. In this paper, we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function
R
in two variables (the Migdal–Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the LYF zeros are equidistributed with respect to a dynamical (1, 1)-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal–Kadanoff renormalization transformation of various other hierarchical lattices. |
doi_str_mv | 10.1007/s12220-019-00167-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2349195446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349195446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23</originalsourceid><addsrcrecordid>eNp9UEtOwzAUtBBIlMIFWFliS4rt2E6zRJS2kSKBEEjAxnLilzZVmhTbXXTHHbghJ8FtkNixmveb0ZtB6JKSESUkuXGUMUYiQtOIECqTSB6hARVi37LX41ATQSKZMnmKzpxbEcJlzJMBWuYA359fb7pdBJjWbgkWv4PtHK46i_0S8GSeY90azCb4Sfu6a3WDJ7tWr-vSXeMsG-FZ0xVh-Nhsbb3pPLS-Dm3WerAbC_5AOkcnlW4cXPziEL1M75_v5lH-MMvubvOojMXYRyChNEWSGqBSc56ykiSSEh5LIcaV1qlMSAUx1xCWlamENNSYghVGy4JqFg_RVa-7sd3HFpxXq25rw89OsZinNBU8WB8i1l-VwamzUKmNrdfa7hQlap-o6hNVIVF1SFTtSXFPcuG4XYD9k_6H9QMKRnrF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349195446</pqid></control><display><type>article</type><title>Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation</title><source>Springer Nature</source><creator>Bleher, Pavel ; Lyubich, Mikhail ; Roeder, Roland</creator><creatorcontrib>Bleher, Pavel ; Lyubich, Mikhail ; Roeder, Roland</creatorcontrib><description>In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee–Yang–Fisher (LYF) zeros. In this paper, we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function
R
in two variables (the Migdal–Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the LYF zeros are equidistributed with respect to a dynamical (1, 1)-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal–Kadanoff renormalization transformation of various other hierarchical lattices.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-019-00167-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Constraining ; Convex and Discrete Geometry ; Diamonds ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Ferromagnetism ; Fourier Analysis ; Free energy ; Geometry ; Global Analysis and Analysis on Manifolds ; Ising model ; Lattices (mathematics) ; Magnetic fields ; Mathematics ; Mathematics and Statistics ; Partitions (mathematics) ; Phase transitions ; Rational functions ; Transformations (mathematics)</subject><ispartof>The Journal of geometric analysis, 2020, Vol.30 (1), p.777-833</ispartof><rights>Mathematica Josephina, Inc. 2019</rights><rights>2019© Mathematica Josephina, Inc. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23</citedby><cites>FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23</cites><orcidid>0000-0002-4623-2590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bleher, Pavel</creatorcontrib><creatorcontrib>Lyubich, Mikhail</creatorcontrib><creatorcontrib>Roeder, Roland</creatorcontrib><title>Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee–Yang–Fisher (LYF) zeros. In this paper, we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function
R
in two variables (the Migdal–Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the LYF zeros are equidistributed with respect to a dynamical (1, 1)-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal–Kadanoff renormalization transformation of various other hierarchical lattices.</description><subject>Abstract Harmonic Analysis</subject><subject>Constraining</subject><subject>Convex and Discrete Geometry</subject><subject>Diamonds</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Ferromagnetism</subject><subject>Fourier Analysis</subject><subject>Free energy</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Ising model</subject><subject>Lattices (mathematics)</subject><subject>Magnetic fields</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partitions (mathematics)</subject><subject>Phase transitions</subject><subject>Rational functions</subject><subject>Transformations (mathematics)</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UEtOwzAUtBBIlMIFWFliS4rt2E6zRJS2kSKBEEjAxnLilzZVmhTbXXTHHbghJ8FtkNixmveb0ZtB6JKSESUkuXGUMUYiQtOIECqTSB6hARVi37LX41ATQSKZMnmKzpxbEcJlzJMBWuYA359fb7pdBJjWbgkWv4PtHK46i_0S8GSeY90azCb4Sfu6a3WDJ7tWr-vSXeMsG-FZ0xVh-Nhsbb3pPLS-Dm3WerAbC_5AOkcnlW4cXPziEL1M75_v5lH-MMvubvOojMXYRyChNEWSGqBSc56ykiSSEh5LIcaV1qlMSAUx1xCWlamENNSYghVGy4JqFg_RVa-7sd3HFpxXq25rw89OsZinNBU8WB8i1l-VwamzUKmNrdfa7hQlap-o6hNVIVF1SFTtSXFPcuG4XYD9k_6H9QMKRnrF</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bleher, Pavel</creator><creator>Lyubich, Mikhail</creator><creator>Roeder, Roland</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4623-2590</orcidid></search><sort><creationdate>2020</creationdate><title>Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation</title><author>Bleher, Pavel ; Lyubich, Mikhail ; Roeder, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Constraining</topic><topic>Convex and Discrete Geometry</topic><topic>Diamonds</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Ferromagnetism</topic><topic>Fourier Analysis</topic><topic>Free energy</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Ising model</topic><topic>Lattices (mathematics)</topic><topic>Magnetic fields</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partitions (mathematics)</topic><topic>Phase transitions</topic><topic>Rational functions</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bleher, Pavel</creatorcontrib><creatorcontrib>Lyubich, Mikhail</creatorcontrib><creatorcontrib>Roeder, Roland</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bleher, Pavel</au><au>Lyubich, Mikhail</au><au>Roeder, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2020</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><spage>777</spage><epage>833</epage><pages>777-833</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative temperature, the zeros of the partition functions of a ferromagnetic Ising model always lie on the unit circle in the complex magnetic field. Zeros of the partition function in the complex temperature were then considered by Fisher, when the magnetic field is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically important as they control phase transitions in the model. One can also consider the zeros of the partition function simultaneously in both complex magnetic field and complex temperature. They form an algebraic curve called the Lee–Yang–Fisher (LYF) zeros. In this paper, we continue studying their limiting distribution for the Diamond Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of an explicit rational function
R
in two variables (the Migdal–Kadanoff renormalization transformation). We study properties of the Fatou and Julia sets of this transformation and then we prove that the LYF zeros are equidistributed with respect to a dynamical (1, 1)-current in the projective space. The free energy of the lattice gets interpreted as the pluripotential of this current. We also prove a more general equidistribution theorem which applies to rational mappings having indeterminate points, including the Migdal–Kadanoff renormalization transformation of various other hierarchical lattices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-019-00167-6</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0002-4623-2590</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2020, Vol.30 (1), p.777-833 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2349195446 |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Constraining Convex and Discrete Geometry Diamonds Differential Geometry Dynamical Systems and Ergodic Theory Ferromagnetism Fourier Analysis Free energy Geometry Global Analysis and Analysis on Manifolds Ising model Lattices (mathematics) Magnetic fields Mathematics Mathematics and Statistics Partitions (mathematics) Phase transitions Rational functions Transformations (mathematics) |
title | Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics, II. Global Pluripotential Interpretation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lee%E2%80%93Yang%E2%80%93Fisher%20Zeros%20for%20the%20DHL%20and%202D%20Rational%20Dynamics,%20II.%20Global%20Pluripotential%20Interpretation&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Bleher,%20Pavel&rft.date=2020&rft.volume=30&rft.issue=1&rft.spage=777&rft.epage=833&rft.pages=777-833&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-019-00167-6&rft_dat=%3Cproquest_cross%3E2349195446%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-e6ecdb79de16a4492c07610436558faa9670fe34ae449fdf56d1ddb2bda6b1a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2349195446&rft_id=info:pmid/&rfr_iscdi=true |