Loading…
Quasicrystalline and crystalline rare-gas clusters produced in supersonic jets: Impact of the jet clustering level on cathodoluminescence spectra
The paper proposes a new approach to studying cathodoluminescence spectra of substrate-free rare-gas clusters produced in supersonic jets exhausting into a vacuum. The approach, which takes into account the fraction of the clustered substance in the jet, is applied to quantitatively analyze integrat...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vakula, V L Danylchenko, O G Doronin, Yu S Kamarchuk, G V Konotop, O P Samovarov, V N Tkachenko, A A |
description | The paper proposes a new approach to studying cathodoluminescence spectra of substrate-free rare-gas clusters produced in supersonic jets exhausting into a vacuum. The approach, which takes into account the fraction of the clustered substance in the jet, is applied to quantitatively analyze integrated intensities of the luminescence bands of the neutral and charged excimer complexes (Rg2)* and (Rg4+)* measured for nanoclusters of three rare gases (Rg = Ar, Kr, and Xe) with average sizes ranging from 100 to 18000 atoms per clusters (diameters varying from 2 to 13 nm). The amount of the clustered substance, which affects the absolute values of integrated intensity of the bands, is shown to be proportional to the logarithm of the average size of clusters in the jet. Analysis of normalized intensities allowed us to spectroscopically find two ranges of average sizes of Ar, Kr, and Xe nanoclusters which, in accordance with the electron diffraction studies, can be assigned to quasicrystalline icosahedral and crystalline fcc structures in clusters, as well as to find the cluster size range in which both structures coexist. We show that in fcc clusters the luminescence of the neutral molecules (Rg2)* comes from within the volume of the cluster, while the charged excimer complexes (Rg4+)* emit mostly from subsurface layers. |
doi_str_mv | 10.48550/arxiv.2001.11998 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2350180975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350180975</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-f1945dfbd7b2a38cd7caf1069c6f6c5e2c0d77891a5d4596079656b045943b4a3</originalsourceid><addsrcrecordid>eNpNT0tLAzEYDIJgqf0B3gKet-axSTbepPgoCCL0Xr5Nsu2WNLvmUfRn-I9dUcHTPGBmGISuKFnWjRDkBuJ7f1oyQuiSUq2bMzRjnNOqqRm7QIuUDoQQJhUTgs_Q52uB1Jv4kTJ43weHIVj8X0eIrtpBwsaXlF1MeIyDLcZZ3AecyjhZQ-gNPricbvH6OILJeOhw3rtv7y_Xhx327uQ8HgI2kPeDHXw5ThPJuGAcTqMzOcIlOu_AJ7f4xTnaPNxvVk_V88vjenX3XIFgouqoroXtWqtaBrwxVhnoKJHayE4a4ZghVqlGUxC2FloSpaWQLZl4zdsa-Bxd_9ROb96KS3l7GEoM0-KWcUFoQ7QS_AuKz2og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350180975</pqid></control><display><type>article</type><title>Quasicrystalline and crystalline rare-gas clusters produced in supersonic jets: Impact of the jet clustering level on cathodoluminescence spectra</title><source>Publicly Available Content Database</source><creator>Vakula, V L ; Danylchenko, O G ; Doronin, Yu S ; Kamarchuk, G V ; Konotop, O P ; Samovarov, V N ; Tkachenko, A A</creator><creatorcontrib>Vakula, V L ; Danylchenko, O G ; Doronin, Yu S ; Kamarchuk, G V ; Konotop, O P ; Samovarov, V N ; Tkachenko, A A</creatorcontrib><description>The paper proposes a new approach to studying cathodoluminescence spectra of substrate-free rare-gas clusters produced in supersonic jets exhausting into a vacuum. The approach, which takes into account the fraction of the clustered substance in the jet, is applied to quantitatively analyze integrated intensities of the luminescence bands of the neutral and charged excimer complexes (Rg2)* and (Rg4+)* measured for nanoclusters of three rare gases (Rg = Ar, Kr, and Xe) with average sizes ranging from 100 to 18000 atoms per clusters (diameters varying from 2 to 13 nm). The amount of the clustered substance, which affects the absolute values of integrated intensity of the bands, is shown to be proportional to the logarithm of the average size of clusters in the jet. Analysis of normalized intensities allowed us to spectroscopically find two ranges of average sizes of Ar, Kr, and Xe nanoclusters which, in accordance with the electron diffraction studies, can be assigned to quasicrystalline icosahedral and crystalline fcc structures in clusters, as well as to find the cluster size range in which both structures coexist. We show that in fcc clusters the luminescence of the neutral molecules (Rg2)* comes from within the volume of the cluster, while the charged excimer complexes (Rg4+)* emit mostly from subsurface layers.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2001.11998</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cathodoluminescence ; Cluster analysis ; Clustering ; Crystal structure ; Crystallinity ; Diameters ; Electron diffraction ; Electrons ; Excimers ; Exhausting ; Icosahedral phase ; Luminescence ; Rare gases ; Substrates ; Xenon</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2350180975?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Vakula, V L</creatorcontrib><creatorcontrib>Danylchenko, O G</creatorcontrib><creatorcontrib>Doronin, Yu S</creatorcontrib><creatorcontrib>Kamarchuk, G V</creatorcontrib><creatorcontrib>Konotop, O P</creatorcontrib><creatorcontrib>Samovarov, V N</creatorcontrib><creatorcontrib>Tkachenko, A A</creatorcontrib><title>Quasicrystalline and crystalline rare-gas clusters produced in supersonic jets: Impact of the jet clustering level on cathodoluminescence spectra</title><title>arXiv.org</title><description>The paper proposes a new approach to studying cathodoluminescence spectra of substrate-free rare-gas clusters produced in supersonic jets exhausting into a vacuum. The approach, which takes into account the fraction of the clustered substance in the jet, is applied to quantitatively analyze integrated intensities of the luminescence bands of the neutral and charged excimer complexes (Rg2)* and (Rg4+)* measured for nanoclusters of three rare gases (Rg = Ar, Kr, and Xe) with average sizes ranging from 100 to 18000 atoms per clusters (diameters varying from 2 to 13 nm). The amount of the clustered substance, which affects the absolute values of integrated intensity of the bands, is shown to be proportional to the logarithm of the average size of clusters in the jet. Analysis of normalized intensities allowed us to spectroscopically find two ranges of average sizes of Ar, Kr, and Xe nanoclusters which, in accordance with the electron diffraction studies, can be assigned to quasicrystalline icosahedral and crystalline fcc structures in clusters, as well as to find the cluster size range in which both structures coexist. We show that in fcc clusters the luminescence of the neutral molecules (Rg2)* comes from within the volume of the cluster, while the charged excimer complexes (Rg4+)* emit mostly from subsurface layers.</description><subject>Cathodoluminescence</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Diameters</subject><subject>Electron diffraction</subject><subject>Electrons</subject><subject>Excimers</subject><subject>Exhausting</subject><subject>Icosahedral phase</subject><subject>Luminescence</subject><subject>Rare gases</subject><subject>Substrates</subject><subject>Xenon</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNT0tLAzEYDIJgqf0B3gKet-axSTbepPgoCCL0Xr5Nsu2WNLvmUfRn-I9dUcHTPGBmGISuKFnWjRDkBuJ7f1oyQuiSUq2bMzRjnNOqqRm7QIuUDoQQJhUTgs_Q52uB1Jv4kTJ43weHIVj8X0eIrtpBwsaXlF1MeIyDLcZZ3AecyjhZQ-gNPricbvH6OILJeOhw3rtv7y_Xhx327uQ8HgI2kPeDHXw5ThPJuGAcTqMzOcIlOu_AJ7f4xTnaPNxvVk_V88vjenX3XIFgouqoroXtWqtaBrwxVhnoKJHayE4a4ZghVqlGUxC2FloSpaWQLZl4zdsa-Bxd_9ROb96KS3l7GEoM0-KWcUFoQ7QS_AuKz2og</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Vakula, V L</creator><creator>Danylchenko, O G</creator><creator>Doronin, Yu S</creator><creator>Kamarchuk, G V</creator><creator>Konotop, O P</creator><creator>Samovarov, V N</creator><creator>Tkachenko, A A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200310</creationdate><title>Quasicrystalline and crystalline rare-gas clusters produced in supersonic jets: Impact of the jet clustering level on cathodoluminescence spectra</title><author>Vakula, V L ; Danylchenko, O G ; Doronin, Yu S ; Kamarchuk, G V ; Konotop, O P ; Samovarov, V N ; Tkachenko, A A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-f1945dfbd7b2a38cd7caf1069c6f6c5e2c0d77891a5d4596079656b045943b4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathodoluminescence</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Diameters</topic><topic>Electron diffraction</topic><topic>Electrons</topic><topic>Excimers</topic><topic>Exhausting</topic><topic>Icosahedral phase</topic><topic>Luminescence</topic><topic>Rare gases</topic><topic>Substrates</topic><topic>Xenon</topic><toplevel>online_resources</toplevel><creatorcontrib>Vakula, V L</creatorcontrib><creatorcontrib>Danylchenko, O G</creatorcontrib><creatorcontrib>Doronin, Yu S</creatorcontrib><creatorcontrib>Kamarchuk, G V</creatorcontrib><creatorcontrib>Konotop, O P</creatorcontrib><creatorcontrib>Samovarov, V N</creatorcontrib><creatorcontrib>Tkachenko, A A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vakula, V L</au><au>Danylchenko, O G</au><au>Doronin, Yu S</au><au>Kamarchuk, G V</au><au>Konotop, O P</au><au>Samovarov, V N</au><au>Tkachenko, A A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasicrystalline and crystalline rare-gas clusters produced in supersonic jets: Impact of the jet clustering level on cathodoluminescence spectra</atitle><jtitle>arXiv.org</jtitle><date>2020-03-10</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The paper proposes a new approach to studying cathodoluminescence spectra of substrate-free rare-gas clusters produced in supersonic jets exhausting into a vacuum. The approach, which takes into account the fraction of the clustered substance in the jet, is applied to quantitatively analyze integrated intensities of the luminescence bands of the neutral and charged excimer complexes (Rg2)* and (Rg4+)* measured for nanoclusters of three rare gases (Rg = Ar, Kr, and Xe) with average sizes ranging from 100 to 18000 atoms per clusters (diameters varying from 2 to 13 nm). The amount of the clustered substance, which affects the absolute values of integrated intensity of the bands, is shown to be proportional to the logarithm of the average size of clusters in the jet. Analysis of normalized intensities allowed us to spectroscopically find two ranges of average sizes of Ar, Kr, and Xe nanoclusters which, in accordance with the electron diffraction studies, can be assigned to quasicrystalline icosahedral and crystalline fcc structures in clusters, as well as to find the cluster size range in which both structures coexist. We show that in fcc clusters the luminescence of the neutral molecules (Rg2)* comes from within the volume of the cluster, while the charged excimer complexes (Rg4+)* emit mostly from subsurface layers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2001.11998</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2350180975 |
source | Publicly Available Content Database |
subjects | Cathodoluminescence Cluster analysis Clustering Crystal structure Crystallinity Diameters Electron diffraction Electrons Excimers Exhausting Icosahedral phase Luminescence Rare gases Substrates Xenon |
title | Quasicrystalline and crystalline rare-gas clusters produced in supersonic jets: Impact of the jet clustering level on cathodoluminescence spectra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasicrystalline%20and%20crystalline%20rare-gas%20clusters%20produced%20in%20supersonic%20jets:%20Impact%20of%20the%20jet%20clustering%20level%20on%20cathodoluminescence%20spectra&rft.jtitle=arXiv.org&rft.au=Vakula,%20V%20L&rft.date=2020-03-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2001.11998&rft_dat=%3Cproquest%3E2350180975%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-f1945dfbd7b2a38cd7caf1069c6f6c5e2c0d77891a5d4596079656b045943b4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350180975&rft_id=info:pmid/&rfr_iscdi=true |